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Abstract

A novel Weyl-Heisenberg algebra in Clifford-spaces is constructed that is based on a matrix-valued HAB

extension of Planck’s constant. As a result of this modified Weyl-Heisenberg algebra one will no longer be able
to measure, simultaneously, the pairs of variables (x, px); (x, py); (x, pz); (y, px), ... with absolute precision.
New Klein-Gordon and Dirac wave equations and dispersion relations in Clifford-spaces are presented. The
latter Dirac equation is a generalization of the Dirac-Lanczos-Barut-Hestenes equation. We display the
explicit isomorphism between Yang’s Noncommutative space-time algebra and the area-coordinates algebra
associated with Clifford spaces. The former Yang’s algebra involves noncommuting coordinates and momenta
with a minimum Planck scale λ (ultraviolet cutoff) and a minimum momentum p = h̄/R (maximal length
R, infrared cutoff ). The double-scaling limit of Yang’s algebra λ → 0, R → ∞, in conjunction with the
large n → ∞ limit, leads naturally to the area quantization condition λR = L2 = nλ2 ( in Planck area
units ) given in terms of the discrete angular-momentum eigenvalues n. It is shown how Modified Newtonian
dynamics is also a consequence of Yang’s algebra resulting from the modified Poisson brackets. Finally,
another noncommutative algebra ( which differs from the Yang’s algebra ) and related to the minimal length
uncertainty relations is presented . We conclude with a discussion of the implications of Noncommutative
QM and QFT’s in Clifford-spaces.

1. INTRODUCTION

In recent years we have argued that the underlying fundamental physical principle behind string theory,
not unlike the principle of equivalence and general covariance in Einstein’s general relativity, might well be
related to the existence of an invariant minimal length scale (Planck scale) attainable in nature. A scale
relativistic theory involving spacetime resolutions was developed long ago by Nottale where the Planck
scale was postulated as the minimum observer independent invariant resolution [1] in Nature. Since “points”
cannot be observed physically with an ultimate resolution, they are fuzzy and smeared out into fuzzy balls
of Planck radius of arbitrary dimension. For this reason one must construct a theory that includes all
dimensions (and signatures) on the equal footing. Because the notion of dimension is a topological invariant,
and the concept of a fixed dimension is lost due to the fuzzy nature of points, dimensions are resolution-
dependent, one must also include a theory with all topologies as well. It is our belief that this may lead to
the proper formulation of string and M theory.

In [2] we applied this Extended Scale Relativity principle to the quantum mechanics of p-branes which
led to the construction of C-space (a Clifford-space, a dimension category) where all p-branes were taken to
be on the same footing; i.e. transformations in C-space reshuffled a string history for a five-brane history,
a membrane history for a string history, for example. It turned out that Clifford algebras contained the
appropriate algebro-geometric features to implement this principle of polydimensional transformations [3, 4,
5].

Clifford algebras have been a very useful tool for a description of geometry and physics [4, 5, 6, 7, 8].
In [3,5] it was proposed that every physical quantity is in fact a polyvector, that is, a Clifford number or a
Clifford aggregate. Also, spinors are the members of left or right minimal ideals of Clifford algebra, which
may provide the framework for a deeper understanding of sypersymmetries, i.e., the transformations relating
bosons and fermions. The Fock-Stueckelberg theory of a relativistic particle [4] can be embedded in the
Clifford algebra of spacetime [3]. Many important aspects of Clifford algebra are described in [3,5,6,7,8].
In particular, spinor representations in any dimensions and signatures in terms of projection operators and
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”families” of spinors based on Clifford algebra objects was developed by [58] that might shed some light in
understanding the families of quarks and leptons.

Using these methods the bosonic p-brane propagator, in the quenched mini superspace approximation,
was constructed in [9]; the logarithmic corrections to the black hole entropy based on the geometry of Clifford
space (in short C-space) were obtained in [14]; the action for higher derivative gravity with torsion from the
geometry of C-spaces and how the Conformal agebra of spacetime emerges from the Clifford algebra was
described in [29]; the resolution of the ordering ambiguities of QFT in curved spaces was resolved by [3].

In this new physical theory the arena for physics is no longer the ordinary spacetime, but a more general
manifold of Clifford algebra valued objects, polyvectors. Such a manifold has been called a pan-dimensional
continuum [5] or C-space [2]. The latter describes on a unified basis the objects of various dimensionality:
not only points, but also closed lines, surfaces, volumes,.., called 0-loops (points), 1-loops (closed strings)
2-loops (closed membranes), 3-loops, etc.. It is a sort of a dimension category, where the role of functorial
maps is played by C-space transformations which reshuffles a p-brane history for a p′-brane history or a
mixture of all of them, for example.

The above geometric objects may be considered as to corresponding to the well-known physical objects,
namely closed p-branes. Technically those transformations in C-space that reshuffle objects of different
dimensions are generalizations of the ordinary Lorentz transformations to C-space. In that sense, the C-
space is roughly speaking a sort of generalized Penrose-Twistor space from which the ordinary spacetime
is a derived concept. In [2] we derived the minimal length uncertainty relations as well as the full blown
uncertainty relations due to the contributions of all branes of every dimensionality, ranging from p = 0
all the way to p = ∞. In [14] we extended this derivation to include the maximum Planck Temperature
condition .

The contents of this work is the following. In section 2.1, 2.2 we will review the basic features of
the Extended Relativity Theory in C-spaces and the explicit derivation from first principles of the minimal
length modified Heisenberg uncertainty relations. This derivation is based on the effective-running Planck
”constant” h̄eff (p2) (energy dependent) that results from a breakdown of poly-dimensional covariance in
C-spaces.

In section 3.1 we show the relationship among Yang’s 4D Noncommutative space-time algebra [16] (in
terms of the 8D phase space coordinates), the area coordinates algebra of the C-space associated with a
6D Clifford algebra, and the Euclideanized AdS5 spaces. The role of AdS5 was instrumental in explaining
the origins of an extra ( infrared ) scale R in conjunction to the (ultraviolet) Planck scale λ characteristic of
C-spaces. Tanaka [ 17 ] gave the physical and mathematical derivation of the discrete spectra for the spatial
coordinates and spatial momenta that yields a minimum length-scale λ ( ultraviolet cutoff in energy ) and
a minimum momentum p = h̄/R ( maximal length R, infrared cutoff ) .

In section 3.2 the double-scaling limit, λ → 0, R → ∞, in conjunction with the large n → ∞ limit,
leads to the area-quantization condition λR = L2 = nλ2 in units of the Planck area, where n is the
angular momentum Σ56 = (1/h̄)M56 eigenvalue. In general, the norm-squared of the Area operator has a
correspondence with the quadratic Casimir ΣABΣAB of the conformal algebra SO(4, 2) ( SO(5, 1) in the
Euclideanized AdS5 case ). This quadratic Casimir must not be confused with the SU(2) Casimir J2 with
eigenvalues j(j +1) . It is shown how Modified Newtonian dynamics is also a consequence of Yang’s algebra
resulting from the modified Poisson brackets.

In section 4 we proceed with the construction of the modified Weyl-Heisenberg algebra in C-spaces that
is based on a matrix-valued HAB Planck constant. As a result of the modified Weyl-Heisenberg algebra one
will no longer be able to measure simultaneously the pairs of variables (x, px); (x, py); (x, pz); (y, px), ... with
absolute precision. Novel QM Klein-Gordon, Dirac wave equations and dispersion relations in C-spaces are
presented. In section 5 we discuss briefly another algebras associated with noncommuting poly-coordinates
and poly-momenta that differ from the generalized Yang’s noncommutative algebra in C-spaces displayed in
[53]. In the final part of section 5 we analyze some of the future implications of QM and QFT’s in C-spaces.

2. THE EXTENDED RELATIVITY IN CLIFFORD SPACES

2.1 Extending Relativity from Minkowski spacetime to C-space
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We embark into the extended relativity theory in C-spaces by a natural generalization of the notion of
a space- time interval in Minkwoski space to C-space:

dX2 = dΩ2 + dxµdxµ + dxµνdxµν + ... (2.1)

The Clifford valued poly-vector:

X = XM EM = Ω 1 + xµγµ + xµνγµ ∧ γν + .........xµ1µ2....µDγµ1 ∧ γµ2 .... ∧ γµD
. (2.2a)

denotes the position of a polyparticle in a manifold, called Clifford space or C-space. The series of terms in
(2) terminates at a finite value depending on the dimension D. A Clifford algebra Cl(r, q) with r + q = D
has 2D basis elements. For simplicity, the gammas γµ correspond to a Clifford algebra associated with a flat
spacetime :

1/2{γµ, γν} = ηµν . (2.2b)

but in general one could extend this formulation to curved spacetimes with metric gµν .
The connection to strings and p-branes can be seen as follows. In the case of a closed string (a 1-loop)

embedded in a target flat spacetime background of D-dimensions, one represents the ”holographic” projec-
tions [9,10] of the closed string (1-loop) onto the embedding spacetime coordinate-planes by the variables
xµν . These variables represent the respective areas enclosed by the ” holographic” projections of the closed
string (1-loop) onto the corresponding embedding spacetime planes [9,10]. Similary, one can embed a closed
membrane (a 2-loop) onto a D-dim flat spacetime, where the projections given by the antisymmetric variables
xµνρ represent the corresponding volumes enclosed by the projections of the 2-loop along the hyperplanes
of the flat target spacetimr background.

This procedure can be carried to all closed p-branes ( p-loops ) where the values of p are p =
0, 1, 2, 3, ....D − 2. The p = 0 value represents the center of mass and the coordinates xµν , xµνρ.... have
been coined in the string-brane literature [9,10] as the holographic areas, volumes, ...projections of the
nested family of p-loops ( closed p-branes ) onto the embedding spacetime coordinate planes/hyperplanes.

The classification of Clifford algebras Cl(r, q) in D = r+q dimensions ( modulo 8 ) for different values of
the spacetime signature r, q is discussed, for example, in the book of Porteous [27]. All Clifford algebras can
be understood in terms of CL(8) and the CL(k) for k less than 8 due to the modulo 8 Periodicity theorem

CL(n) = CL(8)⊗ Cl(n− 8)

. Cl(r, q) is a matrix algebra for even n = r + q or the sum of two matrix algebras for odd n = r + q.
Depending on the signature, the matrix algebras may be real, complex, or quaternionic. For furher details
we refer to [27] . If we take the differential dX and compute the scalar product among two polyvectors
< dX†dX >scalar we obtain the C-space extension of the particles proper time in Minkwoski space. The
symbol X+ denotes the reversion operation and involves reversing the order of all the basis γµ elements in
the expansion of X . It is the analog of the transpose ( Hermitian ) conjugation. The C-space proper time
associated with a polyparticle motion is then :

dΣ2 = (dΩ)2 + Λ2D−2dxµdxµ + Λ2D−4dxµνdxµν + .. (2.3)

Here we have explicitly introduced the Planck scale Λ since a length parameter is needed in order to tie
objects of different dimensionality together: 0-loops, 1-loops,..., p-loops. Einstein introduced the speed of
light as a universal absolute invariant in order to “unite” space with time (to match units) in the Minkwoski
space interval:

ds2 = c2dt2 − dxidxi. (2.4)

A similar unification is needed here to “unite” objects of different dimensions, such as xµ, xµν , etc... The
Planck scale then emerges as another universal invariant in constructing an extended scale relativity theory
in C-spaces [2]. To continue along the same path, we consider the analog of Lorentz transformations in
C-spaces which transform a poly-vector X into another poly-vector X ′ given by X ′ = RXR−1 with

R = eθAEA = exp [(θ1 + θµγµ + θµ1µ2γµ1 ∧ γµ2 .....)]. (2.5)
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and

R−1 = e−θAEA = exp [−(θ1 + θνγν + θν1ν2γν1 ∧ γν2 .....)]. (2.6)

where the theta parameters in (2.5, 2.6) are the components of the Clifford-value parameter Θ = θAEA :

θ; θµ; θµν ; .... (2.7)

they are the C-space version of the Lorentz rotations/boosts parameters.
Since a Clifford algebra admits a matrix representation, one can write the norm of a poly-vectors in

terms of the trace operation as: ||X||2 = Trace X2 Hence under C-space Lorentz transformation the norms
of poly-vectors behave like follows:

Trace X ′2 = Trace [RX2R−1] = Trace [RR−1X2] = Trace X2. (2.8)

These norms are invariant under C-space Lorentz transformations due to the cyclic property of the trace
operation and RR−1 = 1.

Another way of rewriting the inner product of poly-vectors is by means of the reversal operation ∼ ,
not to be confused with the Hermitian operation †, that reverses the order of the Clifford basis generators :
(γµ ∧ γν)∼ = γν ∧ γµ, etc... Hence the inner product can be rewritten as the scalar part of the geometric
product < X∼X >s . The analog of an orthogonal matrix in Clifford spaces is R∼ = R−1 such that

< X ′∼ X ′ >s=< (R−1)∼X∼R∼RXR−1 >s=< RX∼XR−1 >s=< X∼X >s= invariant. (2.8)

This condition R∼ = R−1 , of course, will restrict the type of terms allowed inside the exponential defining
the rotor R in eq-(2-5) because the reversal of a p-vector obeys

(γµ1 ∧ γµ2 ..... ∧ γµp
)∼ = γµp

∧ γµp−1 ..... ∧ γµ2 ∧ γµ1 = (−1)p(p−1)/2γµ1 ∧ γµ2 ..... ∧ γµp
(2.9)

Hence only those terms that change sign ( under the reversal operation ) are permitted in the exponential
defining R = exp[θAEA]. For example, in D = 4, in order to satisfy the condition R∼ = R−1, one must have
from the behavior under the reversal operation expressed in eq-(2-9) that :

R = exp [θµ1µ2γµ1 ∧ γµ2 + θµ1µ2µ3γµ1 ∧ γµ2 ∧ γµ3 ]. (2.10a)

such that
R∼ = exp [θµ1µ2(γµ1 ∧ γµ2)

∼ + θµ1µ2µ3(γµ1 ∧ γµ2 ∧ γµ3)
∼] =

exp [−θµ1µ2γµ1 ∧ γµ2 − θµ1µ2µ3γµ1 ∧ γµ2 ∧ γµ3 ] = R−1. (2.10b)

These transformations are the analog of Lorentz transformations in C-spaces which transform a poly-
vector X into another poly-vector X ′ given by X ′ = RXR−1. The theta parameters θµ1µ2 , θµ1µ2µ3 are the
C-space version of the Lorentz rotations/boosts parameters. The ordinary Lorentz rotation/boosts involves
only the θµ1µ2γµ1 ∧ γµ2 terms, because the Lorentz algebra generator can be represented as Mµν = [γµ, γν ].
The θµ1µ2µ3γµ1 ∧γµ2 ∧γµ3 are the C-space corrections to the ordinary Lorentz transformations when D = 4.

Another possibility is to complexify the C-space polyvector valued coordinates = Z = ZAEA =
XAEA + iY AEA and the boosts/rotation parameters θ allowing the unitarity condition U† = U−1 to hold
in the generalized Clifford unitary transformations Z ′ = UZU† associated with the complexified polyvector
Z = ZAEA such that the interval

< dZ† dZ >s = dΩ̄dΩ + dz̄µdzµ + dz̄µνdzµν + dz̄µνρdzµνρ + ..... (2.11)

remains invariant ( upon setting the Planck scale Λ = 1 ).
The unitary condition U† = U−1 under the combined reversal and complex-conjugate operation will con-

strain the form of the complexified boosts/rotation parameters θA appearing in the rotor : U = exp[ θAEA ].
The theta parameters θA are either purely real or purely imaginary depending if EA

† = ±EA, to ensure that
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an overall change of sign occurs in the terms θAEA inside the exponential defining U so that U† = U−1 holds
and the norm < Z†Z >s remains invariant under the analog of unitary transformations in complexified
C-spaces. These techniques are not very different from Penrose Twistor spaces. As far as we know a
Clifford-Twistor space construction of C-spaces has not been performed so far.

Another alternative is to define the polyrotations by R = exp (ΘAB [EA, EB ]) where the commutator
[EA, EB ] = fABCEC is the C-space analog of the i[γµ, γν ] commutator which is the generator of the Lorentz
algebra, and the theta parameters ΘAB are the C-space analogs of the rotation/boots parameters θµν . The
diverse parameters ΘAB are purely real or purely imaginary depending whether the reversal [EA, EB ]∼ =
±[EA, EB ] to ensure that R∼ = R−1 so that the scalar part < X∼X >s remains invariant under the
transformations X ′ = RXR−1 . This last alternative seems to be more physical because a poly-rotation
should map the EA direction into the EB direction in C-spaces, hence the meaning of the generator [EA, EB ]
which extends the notion of the [γµ, γν ] Lorentz generator.

Another immediate application of thistheory is that one may consider “strings” and “branes” in C-
spaces as a unifying description of all branes of different dimensionality. In fact, a unified action of all
p-branes was written in [44] . As we have already indicated, since spinors are left/right ideals elements of a
Clifford algebra, a supersymmetry is then naturally incorporated into this approach as well. In particular,
one can have world volume and target space supersymmetry simultaneously [44]. A generalized polyvector
valued supersymmetry based on Clifford spaces was attained in [54] and extensions of the Standard Model
based on generalized tensorial gauge theories can also be found in [54]. We hope that the C-space “strings”
and “branes” may lead us towards discovering the physical foundations of string and M-theory. For other
alternatives to supersymmetry see the work by Chisholm and Baylis [33]. A flat C-space does not mean
it has a trivial geometry. A flat C-space has nontrivial torsion. The analog of the scalar curvature in
C-spaces can be decomposed as sums of powers of the Riemann curvature scalar (and other contractions of
the curvature tensors) including torsion terms [13]. Thus, Relativity in C-spaces involves a higher derivative
gravity theory with torsion [44] and a vanishing cosmological constant in C-spaces does not amount to a
vanishing cosmological constant in ordinary spacetimes [44] .

Related to the minimal Planck scale, an upper limit on the maximal acceleration principle in Nature was
proposed by Cainello [28]. This idea is a direct consequence of a suggestion made years earlier by Max Born
on a Dual Relativity principle operating in phase spaces [32]. There is an upper bound on the four-force
(maximal string tension or tidal forces in the string case) acting on a particle as well as an upper bound
in the particles velocity. One can combine the maximum speed of light with a minimum Planck scale into
a maximal proper-accleration a = c2/Λ within the framework of Finsler geometry [18]. A thorough study
of Finsler geometry and Clifford algebras has been undertaken by Vacaru [35] . Other several new physical
implications of the maximal acceleration principle in Nature, like neutrino oscillations, have been studied by
[34]. A variable fine structure constant, with the cosmological expansion of the Universe, has been proposed
by us where an exact renormalization group-like equation governing the cosmological time (scale) variation
of the fine structure constant was derived explicitly from this maximal acceleration principle in Nature [37].

2.2 The Generalized String/Brane Uncertainty Relations

Below we will review how the minimal length string uncertainty relations can be obtained fromthe
polyparticle dynamics C-spaces [2]. The truly C-space invariant norm of a momentum polyvector is defined
(after introducing suitable powers of the Planck scale in the sum in order to match units ) :

||P ||2 = π2 + pµpµ + pµνpµν + pµνρp
µνρ + .... = M2 (2.12a)

A detailed discussion of the physical properties of all the components of the polymomentum P in four
dimensions and the emergence of the physical mass m in Minkowski spacetime has been provided in the
book by Pavsic [3]. The polymomentum in D = 4 can be written as :

P = PAEA = µ + pµγµ + Sµνγµ ∧ γν + πµγ5γµ + mγ5. (2.12b)

where the pseudo-scalar component mγ5 is the one which contains the physical mass in Minkwoski spacetime.
This justifies using the notation m for mass.
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The most salient feature of the polyparticle dynamics in C-spaces is that one can start with a constrained
action in C-space and arrive, nevertheless, at an unconstrained Stuckelberg action in Minkowski space (a
subspace of C-space). It follows that pµ is a constant of motion pµpµ = m2 but m is no longer a fixed
constant entering the action but it is now an arbitrary constant of motion. The true constraint in C-space
is :

||P ||2 = PAPA = µ2 + pµpµ + πµπµ −m2 − 2SµνSµν = M2. (2.12c)

This is basically the distinction between the variable m and the fixed constant M . The variable m is the
conjugate to the Stuckelberg evolution parameter s that allowed Pavsic to propose a natural solution of the
problem of time in Quantum Cosmology [3] . Eq-(2-12c) is a generalization (more degrees of freedom) of the
de Sitter top studied in [48].

Nottale has given convincing arguments why the notion of dimension is resolution dependent, and at the
Planck scale, the minimum attainable distance, the dimension becomes singular, that is blows-up. Setting
aside at this moment the potential algebraic convergence problems when D = ∞, if we take the dimension
at the Planck scale to be infinity, then the norm P 2 will involve an infinite number of terms. It is precisely
this infinite series expansion which will reproduce all the different forms of the Casimir invariant masses
appearing in kappa-deformed Poincare algebras [11,12]. As mentioned earlier, when D = ∞, the Planck
scale appearing in the series expansion of ( 2.12 ) Λ∞ = G1/0 = 1.

It was discussed recently why there is an infinity of possible values of the Casimirs invariant M2 due to
an infinite choice of possible bases. The parameter κ is taken to be equal to the inverse of the Planck scale.
The classical Poincare algebra is retrieved when Λ = 0. The kappa-deformed Poincare algebra does not act
in classical Minkwoski spacetime. It acts in a quantum-deformed spacetime. We conjecture that the natural
deformation of Minkowski spacetime is given by C-space.

The way to generate different expressions for the M2 is by taking slices (sections ) of the 2D-dim
mass-shell hyper-surface in C-space onto subspaces of smaller dimensionality. This is achieved by imposing
the following constraints on the holographic components of the polyvector-momentum. In doing so one is
explicitly breaking the poly-dimensional covariance and for this reason one can obtain an infinity of possible
choices for the Casimirs M2.

To demonstrate this, we impose the following constraints :

pµνpµν = a2(pµpµ)2 = a2p
4. pµνρp

µνρ = a3(pµpµ)3 = a3p
6. ...... (2.13)

What the terms of eq-( 2.13 ) represents physically is the breaking of the full poly-dimensional covariance
in C-space down to a direct sum of SO(N) subgroups given by SO(D(D−1)/2)⊕SO(D(D−1)(D−2)/3)⊕....
Eq-(2.13) represents geometrically the slicing of the 2D-dimensional mass-shell hypersurface in C-space into
D(D − 1)/2; D(D − 1)(D − 2)/3, ..... dimensional hyper-spherical regions (subspaces). For example when
D = 4, the first term of eq-(2.13) represents the 6-dim spherical region of radius

√
a2p4 which is parametrized

by the 6 coordinates p01, p02, p03, p12, p13, p23. The second term of eq-(2.13) represents the 4-dim spherical
region of radius

√
a3p6 which is parametrized by the 4-coordinates p012, p013, p023, p123, etc.... The radii of

those D(D−1)/2; D(D−1)(D−2)/3, ..... dimensional hyper-spherical regions (subspaces) are parametrized
solely in terms of the ordinary momentum coordinates pµ and the parameters an. This is the reason why
decided to choose such constraint ( 2.13 ). There are many different ways to perform the slicing procedure
in C-space depending on the choices of the coefficients an; i.e, there are many ways to break the full poly-
dimensional covariance in C-space. Upon doing so the norm of the poly-momentum becomes:

||P ||2 = PAPA =
n=D∑
n=0

anp2n = M2(ao, a2, a3, ..., aD) (2.14)

Therefore, by a judicious choice of the coefficients an, and by reinserting the suitable powers of the Planck
scale, which have to be there in order to combine objects of different dimensions, one can reproduce all the
possible Casimirs in the form:

M2 = m2[f(Λm/h̄)]2. m2 ≡ pµpµ = p2. (2.15)
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To illustrate the relevance of polyvectors, we will summarize our derivation of the minimal length string
uncertainty relations [2]. Because of the existence of the extra holographic variables xµν , ... one cannot
naively impose [x, p] = ih̄ due to the effects of the other components. The units of [xµν , pµν ] are of h̄2 and of
higher powers of h̄ for the other commutators. To achieve covariance in C-space which reshuffles objects of
different dimensionality, the effective Planck constant in C-space should be given by a sum of powers of h̄.

This is not surprising. Classical C-space contains the Planck scale, which itself depends on h̄. This
implies that already at the classical level, C-space contains the seeds of the quantum space. At the next
level of quantization, we have an effective h̄ that comprises all the powers of h̄ induced by the commutators
involving all the holographic variables. In general one must write down the commutation relations in terms of
polyvector- valued quantities. In particular, the Planck constant will now be a Clifford number, a polyvector
with multiple components. This will be the subject of section 4 .

The simplest way to infer the effects of the holographic coordinates of C-space on the commutation
relations is by working with the effective h̄that appears in the nonlinear de Broglie dispersion relation. The
mass-shell condition in C-space, after imposing the constraints among the holographic components, yields
an effective mass M = mf(Λm/h̄). The generalized De Broglie relations, which are no longer linear, are [2]:

|Peffective| = |p| f(Λm/h̄) = h̄effective(k2) |k|.

h̄effective(k2) = h̄f(Λm/h̄) = h̄
n=N∑
n=0

an(Λm/h̄)2n = h̄
n=N∑
n=0

an(Λk)2n; m2 = p2 = pµpµ = (h̄k)2. (2.16)

where the upper limit in the sum N = D is given by the spacetime dimension. Using the effective h̄eff in
the well known relation based on the Schwartz inequality and the fact that |z| ≥ |Imz| leads to

∆xi∆pj ≥ 1
2
|| < [xi, pj ] > ||. [xi, pj ] = i h̄eff (k2) δij . (2.17)

In Euclidean space-time one has that the norms obey the condition

h̄2k2 = ||pµpµ|| = m2 = ||(p0)2 + (~p)2|| ≥ ||(~p)2||. m2 ≥ ||(~p)2||. (2.18)

By choosing a positive sign of the numerical coefficients an > 0 in eq-(2.16) it yields

anm2n ≥ an||(~p)2||n = an [ (p1)2 + (p2)2 + ....(pD−1)2 ]n ⇒

anm2n ≥ an(p1)2n; anm2n ≥ an(p2)2n; anm2n ≥ an(p3)2n; ..... anm2n ≥ an(pn)2n (no sum). (2.19)

From the conditions of eq-(2.19) one learns that eq-(2.16) obeys the inequality

h̄effective(k2) = h̄f(Λm/h̄) = h̄
n=N∑
n=0

an(Λm/h̄)2n ≥ h̄
n=N∑
n=0

an (Λ/h̄)2n (pn)2n. (2.20)

The use of the inequalities,

< p2 > ≥ (∆p)2; < p4 > ≥ (∆p)4; ..... < p2n > ≥ (∆p)2n (2.21)

in eq-( 2.20) leads to :

< h̄effective(k2) > ≥ h̄
n=N∑
n=0

an (Λ/h̄)2n (< (pn)2n >) ≥ h̄
n=N∑
n=0

an (Λ/h̄)2n (∆p)2n. (2.22)

Finally, by recurring to the result of eq-(2.22) in eq-( 2-17), we get that for each pair of conjugate canonical
variables (x, px); (y, py); (z, pz); .. the product of uncertainties (we omit indices for simplicity) is given by

∆x∆p ≥ 1
2
h̄ +

a1h̄

2
(
Λ
h̄

)2 (∆p)2 +
a2h̄

2
(
Λ
h̄

)4 (∆p)4 + ............ (2.23)
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The second term of last relation yields the stringy contribution to the modified uncertainty relations , whereas
the higher order corrections in eq-(2.21) stem from the higher rank components of the poly-momentum and
represent the membrane, 3-brane.... and D − 1-brane contributions to the generalized uncertainty relations
given by :

∆x ≥ h̄

2∆p
+

a1

2
Λ2

h̄
∆p +

a2

2
Λ4

h̄3 (∆p)3 + ..... (2.24)

By replacing lengths by times and momenta by energy one reproduces the minimal Planck time uncertainty
relations. By keeping only the first two terms of eq-(2.24) one can infer that there is a minimum uncertainty
of the order of the Planck scale Λ.

The physical interpretation of these uncertainty relations follow from the extended relativity principle.
As we boost the string to higher trans-Planckian energies, part of the energy will always be invested into the
strings potential energy, increasing its length into bits of Planck scale sizes, so that the original string will
decompose into two, three, four....strings of Planck sizes carrying units of Planck momentum; i.e. the notion
of a single particle/string loses its meaning beyond that point. This reminds one to ordinary relativity,
where boosting a massive particle to higher energies will increase the speed while part of the energy is also
invested into increasing its mass. In this process the speed of light remains the maximum attainable speed
(it takes an infinite energyto reach it) and in our scheme the Planck scale is never surpassed. The effects
of a minimal length can be clearly seen in Finsler geometries [18] having both a maximum four acceleration
c2/Λ (maximum tidal forces) and a maximum speed . The Riemannian limit is reached when the maximum
four acceleration goes to infinity; i.e. The Finsler geometry “collapses” to a Riemannian one.

3. THE NONCOMMUTATIVE SPACETIME YANG’S ALGEBRA AND C-SPACES

3.1 The Area Coordinates Noncommutative algebra, Clifford and Yang’s Algebras

The main result of this section is that there is a subalgebra of the C-space operator-valued coordinates
which is isomorphic to the Noncommutative Yang’s spacetime algebra [16] . This, in conjunction to the
discrete spectrum of angular momentum, leads to the discrete area-quantization in multiples of Planck
areas. Namely, the 4D Yang’s Noncommutative space-time ( YNST ) algebra [16 ] ( written in terms of
8D phase-space coordinates ) is isomorphic to the 15-dimensional subalgebra of the C-space operator-valued
coordinates associated with the holographic areas of C-space. This connection between Yang’s algebra and
the 6D Clifford algebra is possible because the 8D phase-space coordinates xµ, pµ ( associated to a 4D
spacetime ) have a one-to-one correspondence to the X̂µ5; X̂µ6 holographic area-coordinates of the C-space
(corresponding to the 6D Clifford algebra).

Furhermore, Tanaka [ 17] has shown that the Yang’s algebra [ 16 ] ( with 15 generators ) is related to
the 4D conformal algebra ( 15 generators ) which in turn is isomorphic to a subalgebra of the 4D Clifford
algebra because it is known that the 15 generators of the 4D conformal algebra SO(4, 2) can be explicitly
realized in terms of the 4D Clifford algebra as [ 29 ] :

Pµ = Mµ5 +Mµ6 = γµ(1 + γ5). Kµ = Mµ5 −Mµ6 = γµ(1− γ5). D = γ5. Mµν = i[γµ, γν ].. (3.1)

where the Clifford algebra generators :

1. γ0 ∧ γ1 ∧ γ2 ∧ γ3 = γ5. (3.2)

account for the extra two directions within the C-space associated with the 4D Cliffiord-algebra leaving
effectively 4 + 2 = 6 degrees of freedom that match the degrees of freedom of a 6D spacetime [29 ] . The
relevance of [ 29 ] is that it was not necessary to work directly in 6D to find a realization of the 4D conformal
algebra SO(4, 2) . It was possible to attain this by recurring solely to the 4D Clifford algebra as shown in
eq-( 3.1 ) .
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One can also view the 4D conformal algebra SO(4, 2) realized in terms of a 15-dim subalgebra of the
6D Clifford algebra. The bivector holographic area-coordinates Xµν couple to the basis generators Γµ ∧ Γν .
The bivector coordinates Xµ5 couple to the basis generators Γµ ∧ Γ5 where now the Γ5 is another generator
of the 6D Clifford algebra and must not be confused with the usual γ5 defined by eq-(3.2 ) . The bivector
coordinates Xµ6 couple to the basis generators Γµ ∧ Γ6. The bivector coordinate X56 couples to the basis
generator Γ5 ∧ Γ6.

In view of this fact that these bivector holographic area-coordinates in 6D couple to the bivectors basis
elements Γµ ∧Γν , ... , and whose algebra is in turn isomorphic to the 4D conformal algebra SO(4, 2) via the
realization in terms of the 6D angular momentum generators ( and boosts generators ) Mµν ∼ [Γµ,Γν ] ,
Mµ5 ∼ [Γµ,Γ5],.... we shall define the holographic area coordinates algebra in C-space as the dual algebra
to the SO(4, 2) conformal algebra ( realized in terms of the 6D angular momentum, boosts, generators in
terms of a 6D Clifford algebra generators as shown )

Notice that the conformal boosts Kµ and the translations Pµ in eq-( 3.1 ) do commute [Pµ, P ν ] =
[Kµ,Kν ] = 0 and for this reason we shall assign the appropriate correspondence pµ ↔ Xµ6 and xµ ↔ Xµ5,
up to numerical factors ( lengths ) to match dimensions, in order to attain noncommuting variables xµ, pµ .

Therefore, one has two possible routes to relate Yang’s algebra with Clifford algebras. One can relate
Yang’s algebra with the holographic area-coordinates algebra in the C-space associated to a 6D Clifford
algebra and/or to the subalgebra of a 4D Clifford algebra via the realization of the conformal algebra
SO(4, 2) in terms of the 4D Clifford algebra generators 1, γ5, γµ as shown in eq-(3.1).

Since the relation between the 4D conformal and Yang’s algebra and the implications for the AdS/CFT ,
dS/CFT duality have been discussed before by Tanaka [ 17 ], in this work we shall establish the following
correspondence between the C-space holographic-area coordinates algebra ( associated to the 6D Clifford
algebra ) and the Yang’s spacetime algebra via the angular momentum generators in 6D as follows :

iM̂µν = ih̄Σµν ↔ i
h̄

λ2
X̂µν . (3.3)

iM̂56 = ih̄Σ56 ↔ i
h̄

λ2
X̂56. (3.4)

iλ2Σµ5 = iλx̂µ ↔ iX̂µ5. (3.5)

iλ2Σµ6 = iλ2 R

h̄
p̂µ ↔ iX̂µ6. (3.6)

With Hermitian ( bivector ) operator- coordinates :

(X̂µν)† = X̂µν . (X̂µ5)† = X̂µ5. (X̂µ6)† = X̂µ6. (X̂56)† = X̂56. (3.7)

The algebra generators can be realized as :

X̂µν = iλ2(Xµ ∂

∂Xν
−Xν ∂

∂Xµ
). (3.8a)

X̂µ5 = iλ2(Xµ ∂

∂X5
−X5 ∂

∂Xµ
). (3.8b)

X̂µ6 = iλ2(Xµ ∂

∂X6
−X6 ∂

∂Xµ
). (3.8c)

X̂56 = iλ2(X5 ∂

∂X6
−X6 ∂

∂X5
). (3.8d)

where the angular momentum generators are defined as usual :

M̂µν ≡ h̄Σµν . M̂µ5 ≡ h̄Σµ5. M̂µ6 ≡ h̄Σµ6. M̂56 ≡ h̄Σ56. (3.8e)
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which have a one-to-one correspondence to the Yang Noncommutative space-time ( YNST ) algebra
generators in 4D. These generators ( angular momentum differential operators ) act on the coordinates of a
5D hyperboloid AdS5 space defined by :

−(x1)2 + (x2)2 + (x3)2 + (x4)2 + (x5)2 − (x6)2 = R2. (3.9a)

where R is the throat size of the hyperboloid. This introduces an extra and crucial scale in addition to the
Planck scale. Notice that η55 = +1. η66 = −1. 5D de Sitter space dS5 has the topology of S4 × R1 .
Whereas AdS5 space has the topology of R4×S1 and its conformal ( projective ) boundary at infinity has a
topology S3 × S1 . Whereas the Euclideanized Anti de Sitter space AdS5 can be represented geometrically
as two disconnected branches ( sheets ) of a 5D hyperboloid embedded in 6D . The topology of these
two disconnected branches is that of a 5D disc and the metric is the Lobachevsky one of constant negative
curvature. The conformal group SO(4, 2) leaves the 4D lightcone at infinity invariant.

Thus, Euclideanized AdS5 is defined by a Wick rotation of the x6 coordinate giving :

−(x1)2 + (x2)2 + (x3)2 + (x4)2 + (x5)2 + (x6)2 = R2. (3.9b)

whereas de Sitter space dS5 with the topology of a pseudo-sphere S4 × R1 , and positive constant scalar
curvature is defined by :

−(x1)2 + (x2)2 + (x3)2 + (x4)2 + (x5)2 + (x6)2 = −R2. (3.9b)

( Notice that Tanaka [17 ] uses different conventions than ours in his definition of the 5D hyperboloids.
He has a sign change from R2 to −R2 because he introduces i factors in iR ) .

After this discussion and upon a direct use of the correspondence in eqs-(3.3, 3.4, 3.5, 3.6 ...) yields the
exchange algebra between the position and momentum coordinates :

[X̂µ6, X̂56] = −iλ2η66X̂µ5 ↔ [
λ2R

h̄
p̂µ, λ2Σ56] = −iλ2η66λx̂µ. (3.10)

from which we can deduce that :
[p̂µ, Σ56] = −iη66 h̄

λR
x̂µ. (3.11)

and after using the definition N = (λ/R)Σ56 one has the exchange algebra commutator of pµ and N of the
Yang’s spacetime algebra :

[p̂µ,N ] = −iη66 h̄

R2
x̂µ. (3.12)

The other commutator is :

[X̂µ5, X̂56] = −[X̂µ5, X̂65] = iη55λ2X̂µ6 ↔ [λx̂µ, λ2Σ56] = iη55λ2λ2 R

h̄
p̂µ. (3.13)

from which we can deduce that :
[x̂µ,Σ56] = iη55 λR

h̄
p̂µ. (3.14)

and after using the definition N = (λ/R)Σ56 one has the exchange algebra commutator of xµ and N of the
Yang’s spacetime algebra :

[x̂µ,N ] = iη55 λ2

h̄
p̂µ. (3.15)

The other relevant holographic area-coordinates commutators in C-space are :

[X̂µ5, X̂ν5] = −iη55λ2X̂µν ↔ [x̂µ, x̂ν ] = −iη55λ2Σµν . (3.16)

after using the representation of the C-space operator holographic area-coordinates :

iX̂µν ↔ iλ2 1
h̄
Mµν = iλ2Σµν iX̂56 ↔ iλ2Σ56. (3.17)
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where we appropriately introduced the Planck scale λ as one should to match units.
From the correspondence :

p̂µ =
h̄

R
Σµ6 ↔ h̄

R

1
λ2

X̂µ6. (3.18)

one can obtain nonvanishing momentum commutator :

[X̂µ6, X̂ν6] = −iη66λ2X̂µν ↔ [p̂µ, p̂ν ] = −iη66 h̄2

R2
Σµν . (3.19)

The signatures for AdS5 space are η55 = +1; η66 = −1 and for the Euclideanized AdS5 space are η55 = +1
and η66 = +1. Yang’s space-time algebra corresponds to the latter case.

Finally, the modified Heisenberg algebra can be read from the following C-space commutators :

[X̂µ5, X̂ν6] = iηµνλ2X̂56 ↔

[x̂µ, p̂µ] = ih̄ηµν λ

R
Σ56 = ih̄ηµνN . (3.20)

Eqs-(3.12, 3.15, 3.16, 3.19, 3.20 ) are the defining relations of Yang’s Noncommutative 4D spacetime algebra
involving the 8D phase-space variables. These commutators obey the Jacobi identities. There are other
commutation relations like [Mµν , xρ], [Mµν , pρ] that we did not write down. These are just the well known
rotations ( boosts ) of the coordinates and momenta. An immediate consequence of Yang’s noncommutative
algebra is that now one has modified products of uncertainties

∆xµ ∆pν ≥ h̄ ηµν | < Σ56 > |; ∆xµ ∆xν ≥ λ2 | < Σµν > |; ∆pµ ∆pν ≥ (
h̄

R
)2 | < Σµν > |. (3.21a)

A generalization of Yang’s Noncommutative spacetime algebra to the full Clifford space involving poly-
coordinates and poly-momenta was attained in [53]. Since the poly-vector valued coordinates and momenta
don’t commute one has uncertainty relations of the form

∆xµ1µ2...µn∆pµ1µ2...µn ≥ h̄n; ∆xµ1µ2...µn∆xν1ν2...νn ≥ λ2n; ∆pµ1µ2...µn∆pν1ν2...νn ≥ (
h̄

R
)2n (3.21b)

there is no summation of indices in the l.h.s and we have omitted the numerical factors and indices stemming
from the generalized Kronecker deltas and the structure functions appearing in the r.h.s of eq-(3.21b). These
generalized uncertainty relations and the quantization of areas, volumes, hyper-volumes in units of the
Planck scale will be the subject of future investigation. Noncommutative p-branes actions based on a novel
Moyal-Yang star product deformations of the Nambu-Poisson brackets with an upper and lower scale was
provided in [55]. It was also shown how QM wave equations in a D-dim Noncommutative Yang’s spacetime
could be obtained from ordinary QM wave equations based on spaces with commuting coordinates and
momenta in higher dimensions (D + 2). For details we refer to [55].

3.2 The Double Scaling Limit, Area Quantization and Modified Newtonian Mechanics

In this section we will discuss in detail the double scaling limit and the modified Poisson brackets
leading to to Modified Newtonian dynamics and resulting from Yang’s algebra. When λ → 0 and R → ∞
one recovers the ordinary commutative spacetime algebra. The Snyder algebra [ 22 ] is recovered by setting
R → ∞ while leaving λ intact. To recover the ordinary Weyl-Heisenberg algebra is more subtle. Tanaka
[ 17 ] has shown the the spectrum of the operator N = (λ/R)Σ56 is discrete given by n(λ/R) . This is
not suprising since the angular momentum generator M56 associated with the Euclideanized AdS5 space
is a rotation in the now compact x5 − x6 directions. This is not the case in AdS5 space since η66 = −1
and this timelike direction is no longer compact. Rotations involving timelike directions are equivalent to
noncompact boosts with a continuous spectrum.
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In order to recover the standard Weyl-Heisenberg algebra from Yang’s Noncommutative spacetime
algebra, and the standard uncertainty relations ∆x∆p ≥ h̄ with the ordinary h̄ term , rather than the nh̄
term, one needs to take the limit n →∞ limit in such a way that the net combination of n λ

R → 1.
This can be attained when one takes the double scaling limit of the quantities as follows :

λ → 0. R →∞. λR → L2.

limn→∞ n
λ

R
= n

λ2

λR
=

nλ2

L2
→ 1. (3.22a)

From eq-(3.21) one learns then that :

nλ2 = λR = L2. (3.22b)

The spectrum n corresponds to the quantization of the angular momentum operator in the x5−x6 direction
(after embedding the 5D hyperboloid of throat size R onto 6D ) . Tanaka [ 17 ] has shown why there is a
discrete spectra for the spatial coordinates and spatial momenta in Yang’s spacetime algebra that yields a
minimum length λ ( ultraviolet cutoff in energy ) and a minimum momentum p = h̄/R ( maximal length R
, infrared cutoff ) . The energy and temporal coordinates had a continous spectrum.

The physical interpretation of the double-scaling limit of eq-( 3.22 ) is that the the area L2 = λR becomes
now quantized in units of the Planck area λ2 as L2 = nλ2 . Thus the quantization of the area ( via the
double scaling limit ) L2 = λR = nλ2 is a result of the discrete angular momentum spectrum in the x5− x6

directions of the Yang’s Noncommutative spacetime algebra when it is realized by ( angular momentum )
differential operators acting on the Euclideanized AdS5 space ( two branches of a 5D hyperboloid embedded
in 6D ). A general interplay between quantum of areas and quantum of angular momentum, for arbitrary
values of spin, in terms of the square root of the Casimir A ∼ λ2

√
j(j + 1), has been obtained a while ago in

Loop Quantum Gravity by using spin-networks techniques and highly technical area-operator regularization
procedures [ 41 ] . The advantage of this work is that we have arrived at similar ( not identical ) area-
quantization conclusions in terms of minimal Planck areas and a discrete angular momentum spectrum n via
the double scaling limit based on Clifford algebraic methods (C-space holographic area-coordinates). This
is not surprising since the norm-squared of the holographic Area operator has a correspondence with the
quadratic Casimir ΣABΣAB of the conformal algebra SO(4, 2) ( SO(5, 1) in the Euclideanized AdS5 case ).
This quadratic Casimir must not be confused with the SU(2) Casimir J2 with eigenvalues j(j + 1) . Hence,
the correspondence given by eqs-(3.3-3.8) gives A2 ↔ λ4ΣABΣAB .

In [ 46 ] we have shown why AdS4 gravity with a topological term; i.e. an Einstein-Hilbert action with
a cosmological constant plus Gauss-Bonnet terms can be obtained from the vacuum state of a BF-Chern-
Simons-Higgs theory without introducing by hand the zero torsion condition imposed in the MacDowell-
Mansouri-Chamsedine-West construction. One of the most salient features of [46] was that a geometric mean
relationship was derived among the cosmological constant Λc , the Planck area λ2 and the AdS4 throat size
squared R2 given by (Λc)−1 = (λ)2(R2). Upon setting the throat size to coincide with the Hubble scale
RH one obtains the observed value of the vacuum energy density Λc = L−2

PlanckR−2
H = L−4

P (LP /RH)2 ∼
10−120(MPlanck)4. A similar geometric mean relation is also obeyed by the condition λR = L2(= nλ2) in
the double scaling limit of Yang’s algebra which suggests to identify the cosmological constant as Λc = L−4 .
This geometric mean condition remains to be investigated further. In particular, we presented the preliminary
steps how to construct a Noncommutative Gravity via the Vasiliev-Moyal star products deformations of the
SO(4, 2) algebra used in the study of higher conformal massless spin theories in AdS spaces by taking the
inverse-throat size 1/R as a deformation parameter of the SO(4, 2) algebra [ 46 ] . A Moyal deformation of
ordinary Gravity via SU(∞) gauge theories was advanced in [ 31 ] . A new realization of holography and
the geometrical intepretation of AdS2n spaces in terms of SO(2n− 1, 2) instantons was studied in [45] .

Since the expectation value
λ2

L2
< n|Σ56|n >=

nλ2

L2
= 1. (3.23)

in the double-scaling limit one recovers the standard Heisenberg uncertainty relations :

∆xµ∆pµ ≥ 1
2
|| < [xµ, pµ] > || = h̄. (3.24)
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and the commutators become in the double-scaling limit:

[p̂µ, Σ56] = −iη66 h̄

L2
x̂µ. [p̂µ, N ] = 0. (3.25)

[x̂µ, Σ56] = −iη55 L2

h̄
p̂µ. [x̂µ, N ] = 0. (3.26)

[x̂µ, x̂ν ] = [p̂µ, p̂ν ] = 0. [x̂µ, p̂µ] = ih̄ηµν λ2

L2
Σ56 → ih̄ηµν1. (3.27)

Rigorously speaking, when λ → 0 the last commutator [xµ, pν ] → 0 since the generator Σ56 is well defined.
It is the large n limit of the spectrum < n|Σ56|n > that reproduces the ordinary Heisenberg uncertainty
relations.

The dynamical consequences of the Yang’s Noncommutative spacetime algebra can be derived from the
quantum/classical correspondence :

1
ih̄

[Â, B̂] ↔ {A,B}PB . (3.28)

i.e. commutators correspond to Poisson brackets. More precisely, to Moyal brackets. in Phase Space. In
the classical limit h̄ → 0 Moyal brackets reduce to Poisson brackets. Since the coordinates and momenta
are no longer commuting variables the classical Newtonian dynamics is going to be modified since the
symplectic two-form ωµν in Phase Space will have additional non-vanishing elements stemming from these
non-commuting coordinates and momenta.

In particular, the modified brackets read now :

{{A(x, p), B(x, p)}} = ∂µAωµν∂νB = {A(x, p), B(x, p)}PB{xµ, pν}+

∂A

∂xµ

∂B

∂xν
{xµ, xν}+

∂A

∂pµ

∂B

∂pν
{pµ, pν}. (3.29)

If the coordinates and momenta were commuting variables the modified bracket will reduce to the first term
only :

{{A(x, p), B(x, p)}} = {A(x, p), B(x, p)}PB{xµ, pν} = [
∂A

∂xµ

∂B

∂pν
− ∂A

∂pµ

∂B

∂xν
]ηµνN . (3.30)

In the nonrelativistic limit, the modfied dynamical equations are :

dxi

dt
= {{xi,H}} =

∂H

∂pj
{xi, pj}+

∂H

∂xj
{xi, xj}. (3.31)

dpi

dt
= {{pi,H}} = − ∂H

∂xj
{xi, pj}+

∂H

∂pj
{pi, pj}. (3.32)

The non-relativistic Hamiltonian for a central potential V (r) is :

H =
pip

i

2m
+ V (r). r = [

∑
i

xix
i]1/2 (3.33)

Defining the magnitude of the central force by F = −∂V
∂r and using ∂r

∂xi = xi

r one has the modified dynamical
equations of motion are :

dxi

dt
= {{xi,H}} =

pj

m
δij − F

xj

r
L2

P Σij . (3.34)

dpi

dt
= {{pi,H}} = F

xj

r
δij +

pj

m

Σij

R2
. (3.35)
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The angular momentum two-vector Σij can be written as the dual of a vector ~J as follows Σij = εijkJk so
that :

dxi

dt
= {{xi,H}} =

pi

m
− L2

P F
xj

r
εijk Jk. (3.36)

dpi

dt
= {{pi,H}} = F

xi

r
+

pj

m

εijkJk

R2
. (3.37)

For planar motion ( central forces ) the cross-product of ~J with ~p and ~x is not zero since ~J points in the
perpendicular direction to the plane. Thus, one will have nontrivial corrections to the ordinary Newtonian
equations of motion induced from Yang’s Noncommutative spacetime algebra in the non-relativistic limit.
When ~J = 0, pure radial motion, there are no corrections.

Concluding, eqs-(3.36-3.37 ) determine the modified Newtonian dynamics of a test particle under the
influence of a central potential explicitly in terms of the two LP , R minimal/maximal scales. When LP → 0
and R →∞ one recovers the ordinary Newtonian dynamics vi = (pi/m) and F (xi/r) = m(dvi/dt). The unit
vector in the radial direction has for components r̂ = (~r/r) = (x1/r, x2/r, x3/r). The Modified Newtonian
dynamics represented by eqs-(3.36-3.37) should have important astrophysical consequences in the dynamics
of the spiral arms of rotating galaxies at large distances from the center.

4. QUANTUM MECHANICS IN C-SPACES

The most important result of this section is the emergence of a matrix-valued generalization of Planck’s
constant HAB that is associated with a novel generalized Weyl-Heisenberg Algebra in C-spaces. It is helpful,
although not necessary, to derive the Generalized Weyl-Heisenberg Algebra associated with the Quantum
Mechanics in C-spaces by recurring to matrix realizations of Clifford algebras . For example, Vector coherent
states have been defined on Clifford algebras, quaternions and octonions [49] that is the starting point to
construct an (overcomplete ) basis in a Hilbert space. This will be the subject of future investigations,
in particular to study the Noncommutative Quantum oscillator in C-spaces be recurring to the polyvector
coherent states construction on Clifford algebras generalizing the work of [49]. Our aim in this section
is more simple and we shall just focus on constructing the Weyl-Heisenberg Algebras associated with the
poly-coordinates and poly-momenta.

Due to the noncommutative nature of the basis vectors of the Clifford algebra one has:

[EA , EB ] = fM
AB EM = fABMEM . EA = {1; γµ; γµ ∧ γν ; γµ ∧ γν ∧ γρ; .....}. (4.1)

In order to raise and lower indices it requires the use of the C-space metric GAB and GAB respectively given
by the scalar part of the geometric product of < EAEB >scalar=< EAEB >0= GAB , etc.... The geometry
of curved C-space involving GMN was studied by [13] where it was shown how higher derivative gravity with
torsion in ordinary spacetime emerged naturally from the scalar curvature in C-space. As mentioned above,
we will choose to work with a finite value of D to avoid algebraic convergence problems.

The quantities fM
AB play a similar role as the structure constants in ordinary Lie algebras. A commutator

of two matrices is itself a matrix, which in turn, can be expanded in a suitable matrix basis due to the Clifford
algebraic (vector space) structure inherent in C-spaces. The commutator algebra obeys the Jacobi identities,
the Liebnitz rule of derivations and the antisymmetry properties.

The Clifford geometric product of two basis elements can be rewritten as :

EAEB ≡
1
2
{EA, EB}+

1
2
[EA, EB ] = dC

ABEC + fC
ABEC . (4.2)

In general the geometric product of two poly-vectors EA, EB of ranks r, s, respectively, is given by an
aggregate of multivectors (poly-vectors) of the form :

EAEB =< EAEB >r+s, < EAEB >r+s−2, < EAEB >r+s−4, ......
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< EAEB >r+s−6 ....... < EAEB >|r−s| . (4.3)

The first term of rank r + s is the wedge product EA ∧ EB and the last term of rank |r − s| is the
dot product EA • EB which is obtained by a contraction of indices. In general, the scalar product among
two equal-rank multivectors r = s cannot longer be written in terms of the anticommutator {EA, EB}
except in the case when r = s = 1, {γµ, γν} = 2gµν1. However, for equal-rank multivectors, the scalar part
< EAEB >0= GAB1 where 1 is the unit element of the Clifford algebra and GAB is the C-space metric.

Our proposal for the generalized Heisenberg algebra in C-spaces is

[
XA

LrA

P

, (
LP

h̄
)rBPB ] = i ΘC ΩAB

C = i HAB = i GAB + EXTRA TERMS (4.4)

where we have writen the algebra in terms of dimensionless variables by means of explicitly introducing a
length scale LP (Planck’s scale) . rA, rB are the ranks of the polyvectors XA, PB respectively. The C-space
extension of Planck’s constant is now matrix valued HAB and is encoded in the real-valued structure-
constants given by the scalar part of the triple product of the Clifford algebra generators

ΩAB
C ≡ < EC EA EB >scalar = dAB

C + fAB
C . (4.5a)

1
2
{EA, EB} = dAB

C EC .
1
2
[EA, EB ] = fAB

C EC . (4.5b)

with the additional commutators
[XA, XB ] = 0. [PA, PB ] = 0 (4.6)

such that the algebra given by eqs-(4-4, 4-6) obeys the Jacobi identities. The Clifford-valued-number Θ =
ΘCEC , whose components ΘC encode the matrix-valued ΘCΩAB

C = HAB extension of Planck’s constant
admits the expansion

Θ = ΘCEC = θ1 + θµγµ + θ[µν]γµ ∧ γν + θ[µνρ]γµ ∧ γν ∧ γρ + ..... (4.7)

In the next subsection we will propose another generalized Heisenberg algebra in C-spaces that is associated
with noncommuting coordinates and momenta that differs from the Clifford spaceYang’s algebra of [53].

Due to the fact that

γµγν =
1
2
{γµ, γν}+

1
2
[γµ, γν ] = ηµν 1 +

1
2
γµ ∧ γν = ηµν 1 +

1
2
γ[µν]. (4.8)

the triple products are

< 1 γµ γν >scalar = ηµν (4.9a)

< γρ ∧ γτ γµ γν >scalar = < γρ ∧ γτ γµ ∧ γν >scalar = δµν
ρτ = δµ

ρ δν
τ − δµ

τ δν
ρ (4.9b)

and the modified Weyl-Heisenberg algebra among coordinates and momenta is now

[xµ , pν ] = i h̄ θηµν + i h̄ θ[µν]. (4.10)

with profound consequences. One could set the parameter θ = 1 in order to match the standard term of
the Weyl-Heisenberg algebra. An immediate new consequence is that now one has the modified product of
uncertainties given by

∆x ∆px ≥ 1
2
θh̄; ∆x ∆py ≥ 1

2
h̄θxy; ∆x ∆pz ≥ 1

2
h̄θxz; ..... (4.11)

which imply (for example in D = 4 ) that one cannot simultaneously measure the pairs of quantities (x, py);
(x, pz); (y, pz) .... with absolute precision. This has to be compared with the standard QM product of
uncertainties

∆x ∆px ≥ 1
2
h̄; ∆x ∆py ≥ 0; ∆x ∆pz ≥ 0; ..... (4.12)
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that permit a simultaneous measurement of (x, py); (x, pz); (y, pz); ... with absolute precision. !
Due to the geometric product of two bi-vector basis elements ( omitting numerical factors ) :

γµ1µ2γν1ν2 = γµ1µ2ν1ν2 + (ηµ1ν2γµ2ν1 − ηµ1ν1γµ2ν2 + ...) + ηµ1µ2ν1ν2 1 (4.13)

the bi-vectors commutators among area-coordinates and area-momentum-ccordinates are

[xµ1µ2 , pν1ν2 ] = ih̄2 ΘC Ωµ1µ2 ν1ν2
C = ih̄2 ΘC < EC γµ1µ2 γν1ν2 >scalar (4.14)

where the only non-vanishing quantities in the r.h.s are

ΘC Ω[µ1µ2] [ν1ν2]
C = θ Ω[µ1µ2] [ν1ν2]

0 + θ[ρ1ρ2] Ω[µ1µ2] [ν1ν2]
[ρ1ρ2]

+ θ[ρ1ρ2ρ3ρ4] Ω[µ1µ2] [ν1ν2]
[ρ1ρ2ρ3ρ4]

(4.15)

The structure constants are obtained from the triple products

< 1 γµ1µ2 γν1ν2 >scalar = Ω[µ1µ2] [ν1ν2]
0 = η[µ1µ2][ν1ν2] = ηµ1ν1ηµ2ν2 − ηµ1ν2ηµ2ν1 (4.16a)

< γρ1ρ2ρ3ρ4 γµ1µ2 γν1ν2 >scalar = Ωµ1µ2ν1ν2
ρ1ρ2ρ3ρ4

= δµ1µ2ν1ν2
ρ1ρ2ρ3ρ4

(4.16b)

< γρ1ρ2 γµ1µ2 γν1ν2 >scalar = Ωµ1µ2 ν1ν2
ρ1ρ2

= ηµ1ν2δµ2ν1
ρ1ρ2

− ηµ1ν1δµ2ν2
ρ1ρ2

+ ....... (4.16c)

Therefore from eqs-(4.14-4.16) one learns that ( after setting θ = 1 ) that

∆xµ1µ2 ∆pµ1µ2 ≥ h̄2; (no index summation) ∆xµ1µ2 ∆pν1ν2 6= 0, when µ1 6= ν1, µ2 6= ν2. (4.16d)

In the derivation of eq-(4.16a) we used the result that a flat C-space metric, for example, has for
components

Gµν = ηµν . G[µ1µ2] [ν1ν2] = ηµ1ν1ηµ2ν2 − ηµ1ν2ηµ2ν1 , ..... (4.17a)

It is convenient to order the indices in an increasing sequence:

µ1 < µ2 < µ3...... < µn. ν1 < ν2 < ν3..... < νn. (4.17b)

The Planck scale LP is going to explicitly appear in the commutators of poly-coordinates and poly-
momenta of different rank. For example, in commutators like

[
xµ

Lp
, (

LP

h̄
)2 pν1ν2 ] = i θρ Ωµ ν1ν2

ρ + i θρ1ρ2ρ3 Ωµ ν1ν2
ρ1ρ2ρ3

. (4.18)

where the structure constants are

Ωµ ν1ν2
ρ1ρ2ρ3

= < γρ1ρ2ρ3 γµ γν1ν2 >scalar= δµν1ν2
ρ1ρ2ρ3

. (4.19a)

Ωµ ν1ν2
ρ = < γρ γµ γν1ν2 >scalar= ηµν1δν2

ρ − ηµν2δν1
ρ . (4.19b)

resulting from the geometric product of a vector with a bi-vector basis element which can be decomposed,
up to numerical factors, into a sum of a 3-vector and a vector as

γµ γν1ν2 = γµν1ν2 + ηµν1γν2 − ηµν2γν1 . (4.20)

As mentioned above, the most important conclusion was obtained from eq-(4.11) and is that now one
cannot simultaneously measure the pairs of quantities (x, py); (x, pz), (y, pz); ... with absolute precision.
Similar products of uncertainties apply to the remaining commutators involving poly-coordinates and poly-
momenta of different and/or equal ranks.

The second most important result is that novel QM wave equations in C-space can be found compatible
with the novel Weyl-Heisenberg algebra. These novel wave equations contain, for example, the Dirac-Lanczos
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quaternionic wave equation which was later rediscovered by Barut-Hestenes. These novel wave equations are
obtained by recurring to the realization of the poly-momentum operator in natural units of h̄ = c = Lp = 1
such that is consistent with the Weyl-Heisenberg algebra as follows

PB → i ΘC ΩDB
C

∂

∂XD
= i HDB ∂

∂XD
⇒

[XA , PB ] = [ XA , i ΘC ΩDB
C

∂

∂XD
] = i ΘCΩDB

C δA
D = i ΘCΩAB

C = i HAB . (4.21)

Due to this new realization of the poly-momentum operator it will lead to novel QM wave equations in
C-space and novel dispersion relations. For example, the novel version of the Klein-Gordon and Dirac wave
equations in C-spaces are respectively :

GAB [ i ΘC ΩDA
C

∂

∂XD
] [ i ΘC ΩDB

C

∂

∂XD
] Φ(X) = M2 Φ(X). (4.22a)

[ i EB ΘC ΩDB
C

∂

∂XD
] Ψ(X) = M Ψ(X). (4.22b)

Notice that when one truncates the components of the ΘC parameters to zero, except the first one
θ 6= 0 and which we set to unity, eq-(4.22b) becomes, in the natural units of h̄ = LPlanck = 1 :

−i (
∂

∂Ω
+ γµ ∂

∂xµ
+ γµ ∧ γν ∂

∂xµν
+ ..... ) Ψ(Ω, xµ, xµν , .......) = M Ψ(Ω, xµ, xµν , .....). (4.23)

Ordinary spinors are nothing but elements of the left/right ideals of a Clifford algebra. So they are auto-
matically contained in the polyvector valued wave function Ψ.

Notice that the approach based on eq-(4.23) is different from that by Hestenes who proposed an equation
which is known as the Dirac-Hestenes equation. Dirac’s equation using quaternions (related to Clifford
algebras) was first derived by Lanczos [60]. Later on the Dirac-Lanczos equation was rediscovered by many
people, in particular by Hestenes and Gursey in what became known as the Dirac-Hestenes equation. The
former Dirac-Lanczos equation is Lorentz covariant despite the fact that it singles out an arbitrary but
unique direction in ordinary space: the spin quantization axis. Lanczos, without knowing, had anticipated
the existence of isospin as well. The Dirac-Hestenes equation

(γµ ∂µ Ψ) γ2 ∧ γ1 = mΨ γ0. (4.24)

is covariant under a change of frame γ′µ = UγµU−1 and Ψ′ = ΨU−1 with U an element of the Spin+(1, 3)
yielding ∂Ψ′e′21 = mΨ′e′0 . As Lanczos had anticipated, in a new frame of reference, the spin quantization
axis is also rotated appropriately , thus there is no breakdown of covariance by introducing bivectors in the
Dirac-Hestenes equation.

However, subtleties still remain. In the Dirac-Hestenes equation instead of the imaginary unit i there
occurs the bivector γ1 ∧ γ2. Its square is −1 and commutes with all the elements of the Dirac algebra which
is just a desired property. But on the other hand, the introduction of a bivector into an equation implies a
selection of a preferred orientation in spacetime; i.e. the choice of the spin quantization axis in the original
Dirac-Lanczos quaternionic equation. How is such preferred orientation (spin quantization axis) determined
? Is there some dynamical symmetry which determines the preferred orientation (spin quantization axis) ? is
there an action which encodes a hidden dynamical principle that selects dynamically a preferred spacetime
orientation ( spin quantization axis ) ? A monograph devoted to quaternionic QM can be found in [59].

In the most general case when the 2D components of ΘC are not zero, one can see that eq-(4.22b)
contains more terms than eq-(4.23). One can diagonalize the matrix-valued Planck constant HAB , that has
2D×2D components, into a diagonal matrix with 2D components which matches precisely the 2D components
present in the ΘC parameter. Thus, roughly speaking, the novel Dirac-equation (4.22b) contains 2D copies of
eq-(4.23) if one were to diagonalize the 2D × 2D matrix valued Planck constant HAB into a diagonal matrix
with 2D entries. Eqs-(4.22b, 4.23) are more general than the equations studied in [1] involving quaternions
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and complex quaternions to account for bispinor wave-functions. A generalization of Yang-Mills theories
based on tensorial gauge field theories in C-spaces and higher spins extensions of the Standard Model was
studied in [54] along with generalized poly-vector valued supersymmetries in C-spaces.

The third important conclusion of this section is that a novel matrix-valued dispersion relation between
the poly-momentum and the poly-wave-vector can be obtained from the novel Klein-Gordon equation, asso-
ciated with plane wave solutions, and is given by PA = HABKB which is the generalization of the de Broglie
relation pµ = h̄kµ.

5. CONCLUDING REMARKS

We conclude with a brief discussion on other algebras, besides the Generalized Yang’s noncommutative
algebra in C-spaces [53], involving noncommuting poly-coordinates and poly-momenta. To simplify matters
by not having to keep track of the units we will choose the natural units h̄ = c = LP = 1. The standard
noncommutative algebra in C-spaces must be of the form

[XA, XB ] = iΣAB . [PA, PB ] = iΘAB . [XA, PB ] = iGAB +
i

4
ΣAM ΘMB (5.1)

where GAB is flat C-space metric and the structure constants (c-numbers ) ΣAB = −ΣBA and ΘAB = −ΘBA

obey the conditions

[XA,ΣBC ] = [PA,ΣBC ] = [XA,ΘBC ] = [PA,ΘBC ] = [XA, GBC ] = [PA, GBC ] = 0. (5.2)

A non-canonical change of coordinates

X
′A = XA +

1
2
ΣACPC . P

′A = PA +
1
2
ΘACXC . (5.3)

leads to an algebra with commuting coordinates and momenta but with a modified [X, P ] commutator

[X
′A, X

′B ] = 0. [P
′A, P

′B ] = 0. [X
′A, P

′C ] = iGAC +
i

2
ΣAM ΘMC +

i

16
ΣAB ΘBN ΣND ΘDC . (5.4)

A more general algebra involving noncommuting coordinates/momenta, and related to the minimal
length stringy-uncertainty relations of section 2.2, can be constructed by implementing the idea of 2.2 behind
an effective Planck constant which is energy-momentum dependent h̄eff (p2); i.e. the [X, P ] commutator
must involve quadratic terms in the poly-momenta P 2 = PAPA, which in turn, can be expanded into a sum
of powers of the ordinary momentum pµpµ, as explained in 2.2.

Concluding, the results of sections 2.2, 3.1, 3.2, 4 are all very different. The Noncommutative algebra
given by commutation relations of eqs-(5.1) is different than the Yang’s algebra of section 3 and the novel
Weyl-Heisenberg algebra of section 4 based on a matrix-valued HAB extension of Planck’s constant . The
latter algebra permits to construct the novel QM wave equations in C-spaces with profound new physical
consequences; i.e. there are modified products of uncertainties such that one cannot longer measure simul-
taneously the pairs of variables (x, px); (x, py); (x, pz), ..... and there are also modified dispersion relations in
contradistinction to what occurs in ordinary QM.

We have explained in the introduction and in section 2 why the Planck scale is a true invariant of
C-space that is required in order to combine p-loops ( closed p-branes ) of different dimensions. C-space
Relativity contains two fundamental constants, the speed of light and the Planck scale. The authors in
[11,12, 21] have interpreted the Planck scale as a deformation parameter in the kappa-deformed Poincare
algebras l = 1/κ = λ, ( used in Double Special Relativity theories ) where the ordinary four-dim Lorentz
invariance is broken explicitly and only the rotational symmetry is preserved.

Quantum group deformations of the Poincare and Conformal group has been developed by Castellani
[20] and used in his construction of a bicovariant q-Gravity theory . One may interpret the q-deformation
parameter in terms of a minimal Planck scale and an upper impassible scale R by setting q = exp(λ/R) so
that when λ goes to zero, or when R goes to infinity, the deformation parameter collapses to the classical
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undeformed values q = 1. Hence, the classical gravitational theory is recovered in the short and large distance
limits of Castellani’s q-Gravity theory. This sort of Ultraviolet/Infrared entanglement duality has received a
lot of attention in the past years within the framework of Noncommutative QFT defined on Noncommutative
spcetimes and in M-theory [ 19, 43],

We have argued in [ 37 ] why the kappa-deformed Poincare algebras could be obtained directly from
an 8D Phase space via a Moyal star product deformation procedure by taking the Planck scale as the
deformation parameter κ = 1/mP = LP and by choosing an appropriate basis Xµ(x, p, κ) , Pµ(x, p, κ) of
the 8D phase-space coordinates such that the Moyal-Bracket Algebra involving the Lorentz and translation
generators associated with the new Xµ, Pµ coordinates is isomorphic to the kappa-deformed Poincare algebra
in terms of the old x, p coordinates.

It is warranted to explore the relationship among all these algebras on a unified footing. Two-parameter
quantum Hopf algebraic deformations of ordinary algebras have been studied in the past in the context of
Quantum Groups [ 20 ] and more recently by the authors [ 38, 42 ]. Unfortunately the latter authors were
not aware of the old work by Yang [ 16 ] on Noncommutative spacetime algebras which involved two different
length scales and of Tanaka’s work [ 17 ] about the connection of Yang’s algebra to de Sitter and Anti de
Sitter spaces and the physical explanation of the orgins of a discrete spectrum for the spatial coordinates and
spatial momenta that yields a minimum length λ (ultaviolet cutoff in energy) and a minimum momentum
p = h̄/R (maximal length R, infrared cutoff) . The importance of Yang’s algebra and the Lie-algebraic
stability in the construction of physical theories within the context of new length scales was addressed by
[51, 52] .

An upper limiting scale in cosmology was long ago advocated by Nottale [1] in his proposal for the
resolution of the cosmological constant problem. It is unknown at the present if Nottale’s Fractal spacetime
construction belongs to the class of Noncommutative Geometries studied by Connes. The importance of
nonlinear dynamics, chaos and fractals in Particle physics and Cosmology has been raised by Nottale and
others. Smith [ 50] has derived the values of all the coupling constants and masses of the Standard Model
based on Clifford algebraic methods associated with hyper-diamond discrete lattices ( a Feyman Chess-Board
model ) generalizing the celebrated Wyler’s mathematical expression for the fine structure constant. Most
recently, Beck [ 39 ] gave convincing numerical results to support why Chaotic Strings dynamics determines
the values of all the Standard Model parameters.

Despite the fact that Clifford algebras could be interpreted already as the quantum extensions of Grass-
mann algebras we believe that a main task in the near future will be to construct QFT’s in C-spaces based
on Quantum Clifford Algebras, like the Braided Hopf Quantum Cliford algebras [15]. It has been argued
by Ablamowicz and Fauser [15] that these Hopf algebraic structures will replace groups and group repre-
sentations as the leading paradigm in forthcoming times and why the Grassmann-Cayley bracket algebras
and other algebraic structures are all covered by the Hopf algebraic framework. Recently, a Dirac-Kahler
fermion action based on a new Clifford product with a noncommutative differential form on a lattice was
introduced in [ 40 ] .

A Moyal-like star product construction in C-spaces deserves further study as well. C-space involves the
physics of all p-loops (closed p-branes), thus it is warranted to use methods of multisymplectic geometry
(mechanics) due to the presence of antisymmetric tensors of arbitrary rank. Nambu-Poisson QM seems to
be the most appropriate one to study C-space QM. In particular the use of the Zariski and Fedosov star
product deformations versus the Moyal one [24] will be welcome. A relativistic variant of the Moyal-Wigner
function was proposed by [47].

To conclude this work : Quantization in C-spaces contains a very rich Noncommutative structure
from which many old results can be derived after breaking the C-space Lorentz covariance/invariance (
pandimensional covariance ) . No extra dimensions are required to introduce a length scale. C-space Relativity
already has a natural invariant minimum Planck scale by definition. The Weyl-Heisenberg algebra in C-spaces
is naturally modified due to the noncommutativity of the Clifford algebra basis elements. In essence, when
both QM and Relativity are extended to C-spaces by means of introducing a matrix-valued Planck constant
and poly-vectors both QM and Relativity theories are modified accordingly which maybe what is required
in order to formulate a consistent Quantum Theory of Gravity.
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