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Abstract

Long ago, Bergshoeff, Sezgin, Tanni and Townsend have shown that the
light-cone gauge-fixed action of a super p-brane belongs to a new kind of su-
persymmetric gauge theory of p-volume preserving diffeomorphisms (diffs) as-
sociated with the p-spatial dimensions of the extended object. These authors
conjectured that this new kind of supersymmetric gauge theory must be re-
lated to an infinite-dim nonabelian antisymmetric gauge theory. It is shown in
this work how this new theory should be part of an underlying antisymmetric
nonabelian tensorial gauge field theory of p + 1-dimensional diffs (upon super-
symmetrization) associated with the world volume evolution of the p-brane. We
conclude by embedding the latter theory into a more fundamental one based on
the Clifford-space geometry of the p-brane configuration space.

Keywords: Antisymmetric Nonabelian Tensor Gauge Theories, Diffeomor-
phisms, Clifford spaces, strings, branes, Yang-Mills, large N limit, n-ary al-
gebras.

1 Introduction

We begin with an introduction reviewing earlier findings that are indispensable
in order to proceed with the main results of this work in section 2. Section 3 con-
tains a brief introductory review before presenting other novel results pertaining
to gauged nonlinear sigma models and Matrix Models based on generalized ma-
trices (hyper-matrices with multi-indices). Finally, we conclude with a thorough
discussion of how to extend our findings to the study of generalized branes in
Clifford spaces.
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1.1 Strings and Branes from the large N limit of SU(N)
Yang-Mills, Wilson Loops and Confinement

A novel approach to evaluate the Wilson loops asociated with a SU(∞) gauge
theory in terms of pure string degrees of freedom was presented in [5]. It was
based on the Guendelman-Nissimov-Pacheva [10] formulation of composite an-
tisymmetric tensor field theories of area (volume) preserving diffeomorphisms
which admit p-brane solutions and which provide a new route to scale symme-
try breaking and confinement in Yang-Mills theory. The quantum effects were
discussed and we evaluated the vacuum expectation values (vev) of the Wilson
loops in the large N limit ofthe quenched reduced SU(N) Yang-Mills theory in
terms of a path integral involving pure string degrees of freedom. The quenched
approximation is necessary to avoid a crumpling of the string world-sheet giv-
ing rise to very large Hausdorff dimensions as pointed out by Olesen [22] The
approach was also consistent with the recent results based on the AdS/CFT
correspondence [6] and dual QCD models ( dual Higgs model with dual Dirac
strings) [7].

It has been believed for a long time that QCD confinement is supposed to be
a non-perturbative solution to QCD in four dimensions ; i.e to SU(3) Yang-Mills
theory [1] . A formal proof of the colour confinement amounts to a derivation
of the area-law for a Wilson loop associated, for example, with the world lines
of a quark-antiquark pair joined in by a string . The area law in the Euclidean
regime is W (C) ∼ exp[−TA] where T is the string tension and the ( Euclidean
) area is A = ltE . The colour-electric potential rises linearly with the length
of the string separating the quark-antiquark and blows up in the l →∞ . This
would be a signal of (colour-electric field lines) confinement, an infinite amount
energy would be required to separate the quarks.

Many attempts have been explored to solve this problem, in particular those
based on the so-called string ansatz [2], [3]

W [C] ∼
∫

Σ(C)

[DX] exp (iSstring). (1.1)

which says that the effective (collective) infrared degrees of QCD at strong
coupling are given by string configurations whose worldsheets have for boundary
the loop C . The Schwinger-Dyson equations for QCD can be reformulated as
an infinite chain of equations for the Wilson loops that simplify drastically in
the large N limit giving the single equation known as the Makeenko-Migdal loop
equation [4] .

In light of the Maldacena AdS/CFT correspondence formulated by many
authors [6] as a relation between partition functions, Maldacena and others
proposed that the average value of a Wilson loop in the large N limit, for
N = 4 SU(N) SYM was given by the partition function of a world-sheet string
action which ends along the loop C in the four-dim boundary. Another approach
has been based on the dual formulation of QCD [7] (in the infrared limit) given
by a U(1) gauge theory adjoined by a dual Higgs model with dual Dirac strings
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[8] (where the quarks live at their end-points) . The average value of the Wilson
loop in this dual phase obeys the area-law fall-off.

For other approaches to solve the confinement problem based on Skyrmions
and others methods see [9]. In [5] we presented a novel approach to evaluate
the Wilson loops asociated with a gauge theory of area-preserving diffeomor-
phisms in terms of the (area) string degress of freedom. It was based on the
Guendelman-Nissimov-Pacheva formulation of composite antisymmetric tensor
field theories of area (volume) preserving diffeomorphims [10]. Such theories ad-
mit p-brane solutions after a dualization procedure [11] . Our results allowed us
to recast the Wilson loop, in the large N limit, in terms of pure string degrees of
freedom and to implement the new route to spontaneous scale-symmetry break-
ing and confinement in Yang-Mills theory proposed by [26], followed by the
brane/wave duality principle [27] which permits to show how scale-symmetry
breaking and confinement occurs in p-branes solutions of composite antisym-
metric tensor field theories of area (volume) preserving diffs through the intro-
duction of a preferred scale.

In [12] it was shown how the quenched large N limit of SU(N) Yang-Mills
theory admits strings, membranes and bag excitations. The quenched approx-
imation was necessary to avoid a crumpling of the string world-sheet giving
rise to very large Hausdorff dimensions as pointed out by Olesen [22] and the
collapse (clustering) of eigenvalues [21]. The large N limit of 4D Yang-Mills
theoryin the quenched approximation, that furnishes the Eguchi-Schild string
action [12] was based on the following quenched action reduced to a ”point” in
D = 4

S = −1
4
(
2π

a
)4

N

g2
Y M

Tr (FµνFµν). (1.2)

Tr FµνFµν = Tr [Aµ(0), Aν(0)][Aµ(0), Aν(0)]. (1.3)

Notice that the reduced-quenched action is definedat a ” point ” xo = 0 .
This is attained by neglecting the off-diagonal components of the matrices (”
fast moving modes ”) and absorbing the full space-time dependence of the gauge
fields into a unitary translational operator given by a plane-wave diagonal N×N
matrix U(x) = exp[ipµ

axµ] . The N entries of the plane-wave elements along the
diagonal are evaluated in terms of N distinct eigenvectors pµ

a , a = 1, 2, 3...N .
Notice that the matrix U(x) is diagonal but is not proportional to the unit
matrix in general. Thus, one can absorb the space-time dependence of the
gauge fields as follows:

Aµ(x) = U†(x)Aµ(0)U(x) ⇒ Fµν(x) = U†(x)Fµν(0)U(x). (1.4)

Due the cyclic property of the trace and the unitary condition U†U = 1, af-
ter simple algebra the trace of the field-strength squared reduces simply to
Tr [Aµ(0), Aν(0)]2. Therefore, there are no ∂µAν terms since one has reduced
the theory to a ”point”, the origin xo = 0. For simplicity we have omitted the
matrix SU(N) indices in eq-(1.4).
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The Weyl-Wigner-Groenowold-Moyal ( WWGM) quantization establishes a
one-to-one correspondence between a linear operator Dµ = ∂µ + Aµ acting on
the Hilbert spaceH of square integrable functions in RD and a smooth c-number
function Aµ(x, y) which is the Fourier transform of Aµ(q, p). The latter quantity
is obtained by evaluating the trace of the Dµ = ∂µ +Aµ operator summing over
the diagonal elements with respect to an orthonormal basis in the Hilbert space.
Under the WWGM correspondence , in the quenched-reduced approximation,
the matrix operator product Aµ.Aν is mapped into the noncommutative Moyal
star product of their symbols Aµ ∗ Aν and the commutators are mapped into
their Moyal brackets:

[ Aµ, Aν ] ⇒ { Aµ, Aν }MB . (1.5)

Replacing the Trace operation with an integration w.r.t the internal phase space
variables σ ≡ q, p gives

(2π)4

N4
Trace →

∫
d2σ. (1.6)

The WWGM deformation quantization of the quenched-reduced original actions
is

S∗ = −1
4

(
2π

a
)4

N

g2
Y M

∫
d2σ Fµν(σ) ∗ Fµν(σ). (1.7a)

Fµν = { iAµ, iAν }. (1.7b)

By performing the following gauge fields/coordinates correspondence

Aµ(σ) → (
2π

N
)1/4 Xµ(σ) (1.8a)

Fµν(σ) → (
2π

N
)1/2 { Xµ(σ), Xν(σ) }MB . (1.8b)

And, finally, by setting the Moyal deformation parameter ”h̄” = 2π/N of the
WWGM deformed action (1.7), to zero ; i.e by taking the classical h̄ = 0 limit
, which is tantamount to taking the large N = ∞ limit, one can see that the
quenched-reduced YM action in the large N limit will become

S = − 1
4g2

Y M

(
2π

a
)4

∫
d2σ { Xµ, Xν }PB { Xµ, Xν }PB . (1.9a)

due to the fact that the Moyal brackets collapse to the ordinary Poisson brackets
in the h̄ = 2π/N = 0 limit ( large N limit ). Therefore, one has obtained the
same functional form of the Eguchi-Schild string action (1.9), up to a different
numerical factors than the string tension, and which is invariant under area-
preserving reparametrizations from the quenched-reduced large N Yang-Mills
theory via the WWGM quantization procedure.
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The large N limit of 4D Yang-Mills theory in the quenched approximation,
and supplemented by a topological theta term can be related through a Weyl-
Wigner Groenowold Moyal ( WWGM) quantization procedure also to a bag
model; i.e. to an open domain (a bag) of the 3-dim disk D3 [12] . The bulk
D3×R1 is the interior of a hadronic bag and the (lateral ) boundary is the world
volume S2 × R1 of a Chern-Simons-membrane of topology S2 ( a codimension
two object ). Hence, we have an example where the world-volume of a boundary
S2 × R1 is the boundary of theworld-volume of an open 3-brane of topology
D3 such ∂(D3 × R1) = S2 × R1 (setting asside the points at infinity). The
boundary dynamics is not trivial despite the fact that there are no transverse
bulk dynamics associated with the interior of the bag. This is due to the fact
that the 3-brane is spacetime filling : 3 + 1 = 4 and therefore has no transverse
physical degrees of freedom.

To obtain the 3-brane (a bag) action with the proper value of the bag tension,
from the WWGM quantization of Yang-Mills, one must enlarge the two-dim
phase space to a four-dim one : q1, p1, q2, p2 and to repeat the same procedure
as before. The trace becomes now an integration w.r.t the four qi, pi variables
that have a correspondence to the four world-volume σa variables. The large N
limit of quenched Yang-Mills yields the Dolan-Tchrakian action for a 3-brane
(bag) in the conformal gauge, once the correspondence Aµ(σa) → Xµ(σa) is
made, [12]

S = − 1
4g2

Y M

(
2π

a
)4

∫
d4σ {Xµ, Xν}PB{Xµ, Xν}PB =

− 1
4g2

Y M

(
2π

a
)4

∫
d4σ ωa1a2 (∂a1 Xµ ∂a2 Xν) ωb1b2 (∂b1 Xµ ∂b2 Xν) (1.9b)

where ωa1a2 is an antisymmetric 4 × 4 matrix whose entries are ±1. The bag
constant µ of mass dimension was related to the bag (3-brane) tension Tbag of
dimensions of (mass)4 as[12]

Tbag = µ4 ∼ 1
a4g2

Y M

. (1.10)

where a was the lattice spacing of the large N quenched, reduced QCD given
by (2π/a) = ΛQCD = 200 Mev.

This Moyal deformation approach also furnishes dynamical membrane ac-
tions (in the light-cone gauge) as well [12] when one uses the spatial quenching
approximation to a line (one dimension) , instead of quenching to a point. Ba-
sically, a Moyal quantization takes the operator Âµ(xµ) into Aµ(xµ; q, p) and
commutators into Moyal brackets. A dimensional reduction to one temporal
dimension (quenching to a line) brings us to functions of the form Aµ(t, q, p),
which precisely corresponds to the membrane coordinates Xµ(t, σ1, σ2) after
identifying the σa variables with q, p. The h̄ = 0 limit turns the Moyal bracket
into a Poisson one. Upon the identification of h̄ = 2π/N , the classical h̄ = 0
limit is tantamount to the N = ∞ limit and it is in this fashion how the large
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N limit of the SU(N) (noncovariant) matrix model bears a direct relation to
the physics of membranes (in the light cone gauge).

To obtain superstrings and supersymmetric branes from the large N limit
of SU(N) supersymmetric Yang-Mills theory via deformation quantization re-
quires the supersymmetric extension of the Moyal brackets [25] which is a non-
trivial problem. These results were extended to more general p-brane actions
(when p = 4k) given by Dolan-Tchrakian (Skyrme type actions) starting from
Generalized Yang Mills theories in the large N limit ; i.e. branes are roughly
speaking Moyal deformations of Generalized Yang-Mills theories [12]. It waslater
shown how Nambu-Goto strings can be also be obtained directly from SU(N)
Born-Infeld models in the large N limit [15] . The average Wilson loop

< WA[C] >vev =
∫

[DA] WA(C) eiSY M [A]. (1.11)

is defined with

WA[C] =
1
N

trace Path exp [i
∮

C

Aµdxµ]. (1.12)

In the quenched-reduced approxomation, defined at a ”point”, the Wilson loop
shrinks to zero sizeC → 0 and hence the exponential reduces to unity since the
integral has collapsed to zero and one gets

W [C] → W [C = 0] =
1
N

trace 1N×N =
N

N
= 1. (1.13)

Notice how important is the factor of 1/N in eq-(1.13) is in order to cancel the
N factor stemming from taking the trace of the unit N ×N matrix 1N×N . As
we have shown above in eqs- (1.2-1.9) the quenched-reduced YM action in the
large N limit becomes the Eguchi-Schild action for the string after using the
Aµ(σ) → Xµ(σ) correspondence via the WWGM quantization method. Thus,
we have the following result

[DA]quenched → [DX] W (C) → W (0) = 1. eiSY M

quenched → eiSstring (1.14)

Under the conditions (1.14), the quenched-reduced SU(N) Yang-Mills in the
large N limit allows to compute the vacuum expecation values (vev) of the
Wilson loop purely in terms of string degrees of freedom using the Eguchi-
Schild action for the string (the square of the Poisson brackets) which is area-
preserving diffs invariant; i.e. in the quenched-reduced large N Yang-Mills, the
spacetime-independent sector (zero modes) of the gauge fields Aµ have a one-
to-one correspondence to the string coordinates Xµ as explained earlier in the
previous section , leading finally to:

< W [C] >quenched =
∫

[DA]quenched W (0)eiSY M (A) =
∫

[DA]quenched eiSY M (A) =
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∫
Σ(C)

[DX] eiSstring ≡ Ψo[C]. (1.15)

The state Ψo[C] is the vacuum wave functional representing the creation of
a string (a loop) from from the vacuum (a point) and sweeping in the processs
a world-sheet Σ whose boundary is the loop configuration C. The path integral
involves a summation over all string embeddings X subject to the condition
that the boundary of Σ is C. We have not included the bag-action in (1.14) in
the evaluation of the Wilson-loop averages in large N limit since the bag action
is devoid of bulk transverse degrees of freedom. The bag in 4-dim is spacetime
filling giving a trivial action equal to the four-dim spacetime-volume of the bag.
For this reason we concentrated solely on the string-degrees of freedom ( areas
) in (1.15). To sum up, this last expression (1.15) related the vev of the Wilson
loop of the large N limit of SU(N) Yang-Mills, in the quenched approximation,
in terms of string degrees of freedom [5].

To our knowledge, Eguchi and Kawai [20] were the first to propose a re-
duction of the dynamical degrees of freedom of Yang-Mills by arguing that
Yang-Mills theory on a D-dim spacetime is equivalent, in the large N = ∞
limit, to a reduced model based on the action

SEK =
1

2g2ΛD
trace [ Aµ, Aν ]2. (1.16)

Namely, this model amounts to a dimensional-reduction of the Yang-Mills theory
to a ”point”, where Aµ are a collection of D space-time independent matrices
and Λ is a dimensional parameter related to the inverse lattice scale. However,
it turned out that strictly speaking the Wilson-loop average

<
1
N

trace Path ei
∮

dxµAµ > =
∫

[DAµ]
1
N

trace Path ei
∮

dxµAµ eiS[A].

(1.17)
using the full-fledged Yang-Mills action SY M [A] in the path-integral is not equal
to the average using the reduced Eguchi-Kawai action, SEK [A], except in D = 2
[21], [23] . One reason is that the shift-symmetry invariance of the reduced
Eguchi-Kawai action, symmetry were the matrices Aij

µ are shifted by a diagonal
matrix aµδij , can be broken spontaneously in the large N limit [21]. Such large
N limit plays the role of an statistical averaging and phase transitions may
occur in perturbation theory of the reduced model in D ≥ 3. It happens that
the path integral measure for D ≥ 3 is singular and the eigenvalues collapse
(cluster) leading to a breakdown of the shift-symmetry in perturbation theory.

Related to the stringy picture of the large N Yang-Mills reduced models,
another interpretation of the shift-symmetry breakdown phenomenon has been
given by Olesen [22] by showing that the dynamics of the reduced Eguchi-
Kawai action is not able to suppress the higher-modes thereby resulting in a
very crumpled (fractal-like) world-sheet with a very high Hausdorff dimension.
A smooth string world-sheet would require a dominace of the lower-modes in the
path integral. For this to occur one could introduce a quenching procedure in

7



the Eguchi-Kawai action to be able to suppress the higher-modes. It has been
shown that the equivalence between the large N limit of Yang-Mills theory
on a whole space and the reduced Eguchi-Kawai model is valid provided a
quenching prescription is introduced [24] such that the D-dim planar graphs
associated with the large N Yang-Mills theory are truly reproduced by the
reduced, quenched Eguchi-Kawai model.

The physical meaning of this relation (1.15) can be envisaged as follows. As
we shrink the Wilson loop to a point, the subsequent large N limit procedure
amounts to introducing an extra dependence on the phase space variables (q, p)
, that later are identified as the string coordinates. The SU(N) fiber ”sitting”
at the point P becomes the area world-sheet of the string in the large N limit.
Hence the Wilson loop which had initially shrunk to a point re-emerges as an
internal loop living in the SU(N) fiber that was sitting at the point P . This is
compatible with the area-preserving diffs invariant nature of the Eguchi-Schild
action. Roughly speaking, since areas are preserved, as we shrink the Wilson
loop to a point (to zero) it must re-emerged along the fibers in order to preserve
the area.

Hence we have obtained an exact result consistent with those given in the
literature since (by definition) the vacuum wave-functional Ψo[C] , appearing
in the r.h.s, is defined by a path integral over all world-sheets whose boundary
is C. The latter is the quantum amplitude for a closed string to emerge from
the vacuum ( a ” point ” ) and sweep a world-sheet whose boundary is C.
The topology is given by a disc. A perturbative evaluation of the path integral
requires summing over surfaces of all genera. For more general actions one must
restrict the measure of integration modulo the volume of the world-sheet diffs
group and the group of Weyl diffs for Polyakov-Howe-Tucker type of actions .

1.2 Branes as Composite Antisymmetric Tensor Field the-
ories of Diffeomorphisms, Strings and Wilson Loops

The construction of p′-brane solutions to the rank p+1 composite antisymmetric
tensor field theories developed by Guendelman, Nissimov and Pacheva [10] when
the condition D = p+p′+2 is satisfied was provided in [11]. These field theories
display an infinite-dimensional group of volume-preserving diffeomorphisms of
the target space of the scalar primitive field constituents. The role of local gauge
symmetry is traded over to an infinite-dimensional global Noether symmetry of
volume-preserving diffs. The study of the Ward identities for this infinite-dim
global Noether symmetry to obtain non-perturbative information in the mini-
QED models (the composite form of QED) was analysed in [10] .

The starting Lagrangian is defined

L = − 1
g2

Fµ1µ2...µp+1 Fµ1µ2...µp+1

F = dA = εa1a2....ap+1 ∂µ1φ
a1 ∂µ2φ

a2 ........ ∂µp+1 φap+1 . (1.18)
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the rank p + 1 composite field strength is given in terms of p + 1 scalar fields
φ1(x), φ2(x)....φp+1(x) . An Euler variation w.r.t the φa fields yields the follow-
ing field equations, after pre-multiplying by a factor of ∂µp+2φ

a1 and using the
Bianchi identity dF = 0

∂µ1

(
δL

δ(∂µ1φ
p+2)

)
= 0 ⇒ Fµp+2µ2...µp+1 ∂µ1F

µ1µ2...µp+1 = 0. (1.19)

Notice that despite the Abelian-looking form F = dA the infinite-dimensional
(global ) symmetry of volume-preserving diffs is not Abelian. The theory we
are describing is not the standard YM type . We are going to find now p′-brane
solutions to eq-(1.18) , where D = p + p′ + 2. These brane solutions obeyed
the classical analogs of S and T -duality [11] . Ordinary EM duality for branes
requires D = p + p′ + 4. The latter condition is more closely related to the
EM duality among two Chern-Simons p, p′-branes which are embeddings of a
p, p′-dimensional object into p + 2; p′ + 2 dimensions. These co-dimension two
objects are nothing but high-dimensional Knots .

A special class of (non-Maxwellian) extended- solutions to eqs-(1.19) requires
a dualization procedure [11]

G =∗ F ⇒ Gν1ν2...νp′+1(φ̃(x)) = εµ1µ2....µp+1ν1ν2....νp′+1 Fµ1µ2....µp+1(φ(x)).
(1.20)

After this dualization procedure the eqs-(1.19) are recast in the form:

Gµ1ν2...νp′+1 ∂µ1 Gν2ν3....νp′+2
(φ̃(x)) = 0. (1.21)

The dualized equations (1.21) have a different form than eqs-(1.19) due to the
position of the indices ( the index contraction differs in both cases ). Extended
p′-brane solutions to eqs-(1.21) exist based on solutions to the Aurilia-Smailagic-
Spallucci local gauge field theory reformulation of extended objects given in [13].
These solutions are

Gν1ν2...νp′+1(φ̃(x))|x=X =

T
{ Xν1 , Xν2 , ......, Xνp′+1 }√

− 1
(p′+1)! [{Xµ1 , Xµ2 , ......, Xµp′+1}] [{Xµ1 , Xµ2 , ......, Xµp′+1

}]
. (1.22)

where T is the p′-brane tension and the Nambu-Poisson bracket w.r.t the p′ +1
world-volume variables is defined as the ordinary determinant /Jacobian

{ Xν1 , Xν2 , Xν3 , ......, Xνp′+1 }NPB =

εσ1σ2σ3....σp′+1
∂σ1Xν1 ∂σ2 Xν2 ....... ∂σp′+1 Xνp′+1 . (1.23)

All quantities are evaluated on the p′ + 1-dim world-volume support of the p′-
brane; i.e. one must restrict the dual-scalar solutions φ̃a(x) to those points in
the D-dimensional spacetime which have support on the brane given by x =
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X(σ1, σ2, ...). Solutions to all of the D-dim spacetime region can be extended
simply by using delta functionals δ(x−X(σ)).

String solutions ( p′ = 1 ) to the rank two ( p + 1 = 2 ) composite antisym-
metric tensor field theories of area-preserving diffs in D = 4 = p+p′+2 = 2+2.
The Wilson loop associated with the composite gauge field is defined:

exp

[
i

∮
C

Aµ(φa) dxµ

]
, Aµ(φ) ≡ εab φa(x) ∂µ φb(x). (1.24)

Due to the Abelian-loooking form of the composite field strength ( as we said
earlier, the algebra of volume-preserving diffs is not abelian ) one can neverthe-
less use Stokes law

F = dA ⇒ Fµν(φ) ≡ { φ1, φ2}PB = εab ∂µ φa ∂νφb, a, b = 1, 2. (1.25)

after using Stokes law the exponential can be written as

exp

[
i

∫ ∫
Σ(C)

Fµν(φa) dxµ ∧ dxν

]
. (1.26)

where the flux is evaluated through a surface Σ(C) whose boundary is C. If one
evaluates all these quantities along the points x whose support lie on the string-
world sheet x = X one may use the string solutions above to the composite
antisymmetric tensor field theory given by the previous equations

G(φ̃) = Π = ∗F (φ) ⇒

Gν1ν2(φ̃)|x=X = Πν1ν2(X) =
T {Xν1 , Xν2}√

− 1
2{Xµ, Xν}{Xµ, Xν}

= εν1ν2µ1µ2Fµ1µ2(φ)|x=X .

(1.27)
where T is the string’s tension and one is using now ordinary Poisson brackets.

The quantity Πµν is the area-conjugate momentum of the string obeying the
Hamilton-Jacobi equation for the string analog of a point particle momentum.
Hamilton-Jacobi equations for strings and branes have been given in [13] . Using
these relations above allows one to rewrite the flux (after inserting the product
of two spacetime epsilon tensors εµ1µ2µ3µ4 ) as

1
4!

εµ1µ2µ3µ4 Fµ1µ2(φ) εµ1µ2µ3µ4 dxµ1 ∧ dxµ2 = Gµ3µ4(φ̃) dΣ̃µ3µ4 . (1.28)

For those self dual string configurations , the following relations among the
Poisson brackets are obeyed

Self Dual Strings ⇒ dΣ = ∗dΣ ⇒

{ Xµ3 , Xµ4 }PB = εµ1µ2,µ3,µ4 { Xµ1 , Xµ2 }PB . (1.29)
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Self dual strings automatically obey the string equations of motion as a result
of the Jacobi identities for the Poisson brackets:

{ Xν , { Xµ, Xν } } = εµνρτ { Xν , { Xρ, Xτ } } = 0. (1.30)

The vanishing of the second term of the last equation is due to the Jacobi
identities of the Poisson bracket.

Upon evaluation of the flux through the (self-dual) string world sheet , whose
boundary is C , and restricting to self dual string configurations allows finally
to yield the explicit relationship between the Wilson loop for the field Aµ(φ)
and the Dirac-Nambu-Goto string action, in terms of the string coordinates
Xµ(σ, τ), and whose worldsheet boundary is C

W (C) = exp

[
i

∮
C

Aµ(φ)dxµ

]
|x=X =

exp

[
iT

∫ ∫
Σ(C)

dσdτ
√
−{Xµ, Xν} {Xµ, Xν}

]
. (1.31)

since the determinant of the induced worldsheet metric as a result of the string’s
embedding onto the ( flat ) target spacetime is:

det (hab) = det ( ηµν∂aXµ∂bX
ν ) = { Xµ, Xν } { Xµ, Xν }. (1.32)

Therefore, we have proven, on−shell , that the Wilson loop associated with the
composite antisymmetric tensor field theory of area-preserving diffeomorphisms
, after using Stokes law, equals the exponential of the self-dual string action (an
area) whose worldsheet boundary is C.

2 Branes as Antisymmetric Nonabelian Tenso-
rial Gauge Field Theories of Diffeomorphisms

2.1 Gravity as Gauge Theory of Diffs and Holography

Some time ago Park [28] showed that 4D Self Dual Gravity is equivalent to
a WZNW model based on the group SU(∞). Namely, 4D Self Dual Gravity
is the non-linear sigma model based in 2D whose target space is the “group
manifold” of area-preserving diffs of another 2D-dim manifold. Roughly speak-
ing, this means that the effective D = 4 manifold, where Self Dual Gravity is
defined, is “spliced” into two 2D-submanifolds: one submanifold is the original
2D base manifold where the non-linear sigma model is defined. The other 2D
submanifold is the target group manifold of area-preserving diffs of a two-dim
sphere S2.
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The authors [29] went further and generalized this particular Self Dual Grav-
ity case to the full fledged gravity in D = 2 + 2 = 4 dimensions, and in general,
to any combinations of m + n-dimensions. Their main result is that m + n-dim
Einstein gravity can be identified with an m-dimensional generally invariant
gauge theory of Diffs N , where N is an n-dim manifold. Locally the m + n-
dim space can be written as Σ = M × N and the metric GAB decomposes
as:

GAB =
(

gµν(x, y) + e2gab(x, y) Aa
µ(x, y) Ab

ν(x, y) eAa
µ(x, y) gab(x, y)

eAa
µ(x, y) gab(x, y) gab(x, y)

)
,

(2.1)
The connection Aa

µ(x, y) is the nonlinear connection of Lagrange-Finsler
and Hamilton-Cartan spaces [30], [31]. The decomposition (2.1) must not be
confused with the Kaluza-Klein reduction where one imposes an isometry re-
striction on the GAB that turns Aa

µ into a gauge connection associated with
the gauge group G generated by isometry. Dropping the isometry restrictions
allows all the fields to depend on all the coordinates x, y. Nevertheless Aa

µ(x, y)
can still be identified as a connection associated with the infinite-dim gauge
group of Diffs N . The gauge transformations are now given in terms of the
Lie derivatives w.r.t the internal space indices ya as follows

δAa
µ = − 1

e
Dµξa = − 1

e
( ∂µ ξa − e [ Aµ, ξ]a ). (2.2a)

The Lie bracket is defined as

Aµ ≡ Aa
µ ∂a, ξ ≡ ξa ∂a ⇒ LAµ ξ = [ Aµ, ξ]a = Ab

µ ∂b ξa − ξb ∂b Aa
µ.

(2.2b)

δgab = Lξ gab = [ξ, g]ab = ξc ∂c gab + gac ∂b ξc + gcb ∂a ξc. (2.2c)

δgµν = Lξ gµν = [ξ, gµν ] = ξa ∂a gµν . (2.2d)

[ Aµ, Aν ]a = Ac
µ ∂c Aa

ν − Ac
ν ∂c Aa

µ. (2.2e)

In general, the Lie derivative LXT along the vector X = Xa ∂a of the mixed
tensor T in the internal space is defined by [32]

LX T a1a2.....an

b1b2.......bm
= ( Xc ∂c T a1a2.....an

b1b2.......bm
) +

m∑
i=1

(∂bi Xc) T a1a2......an

b1b2......c.....bm
−

n∑
i=1

(∂c Xai) T a1a2......c.....an

b1b2...........bm
. (2.2f)

there is a key minus sign in the last term of (2.2f) relative to the first two terms.
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Using eq-(2.1) the authors [29] have shown that the curvature scalar R(m+n)

in m + n-dim decomposes into

R(m+n) = gµν R(m)
µν +

e2

4
gab F a

µν F b
ρτ gµρ gντ + gab R

(n)
ab +

1
4
gµν gab gcd [ (Dµ gac) (Dν gbd) − (Dµ gab)(Dν gcd) ] +

1
4

gab gµν gρτ [ ∂a gµρ ∂bgντ − ∂a gµν ∂b gρτ ] (2.3)

plus total derivative terms given by

∂µ(
√
|det gµν |

√
|det gab| Jµ ) − ∂a(

√
|det gµν |

√
|det gab| eAa

µJµ) +

∂a(
√
|det gµν |

√
|det gab| Ja ), (2.4)

with the currents:

Jµ = gµν gab Dν gab, Ja = gab gµν ∂b gµν . (2.5)

S =
1

2κ2

∫
dmx dny

√
|det(gµν)|

√
|det(gab)| R(m+n)(x, y). (2.6)

Therefore, Einstein gravity in m + n-dim describes an m-dim generally in-
variant field theory under the gauge transformations or Diffs N . Notice how Aa

µ

couples to the graviton gµν , meaning that the graviton is charged /gauged in
this theory and also to the gab fields. The “metric” gab on N can be identified
as a non-linear sigma field whose self interaction potential term is given by:
gabR

(n)
ab . The currents Jµ, Ja are functions of gµν , Aµ, gab. Their contribution

to the action is essential when there are boundaries involved; i.e. like in the
AdS/CFT correspondence.

When the internal manifold N is a homogeneous compact space one can
perform a harmonic expansion of the fields w.r.t the internal y coordinates,
and after integrating w.r.t these y coordinates, one will generate an infinite-
component field theory on the m-dimensional space. A reduction of the Diffs
N , via the inner automorphims of a subgroup G of the Diffs N , yields the
usual Einstein-Yang-Mills theory interacting with a nonlinear sigma field. But
in general, the theory described in (2.3) is by far richer than the latter theory.
A crucial fact of the decomposition in (2.3) is that each single term is by itself
independently invariant under Diffs N .

In the special case when gµν(x) depends solely on x and gab(y) depends on
y then the spacetime gauged “Ricci scalar” coincides with the ordinary Ricci
scalar gµν(x) R

(m)
µν (x) and the internal space “Ricci scalar” becomes the true

Ricci scalar of the internal space. However, the gauge field Aµ(x, y) still retains
its full dependence on both variables x, y.
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We have shown [33] that in this particular case the D = m + n dimensional
gravitational action restricted to AdSm×Sn backgrounds admits a holographic
reduction to a lower d = m-dimensional Yang-Mills-like gauge theory of diffs of
Sn, interacting with a charged/gauged nonlinear sigma model plus boundary
terms, by a simple tuning of the radius of Sn and the size of the throat of the
AdSm space. Namely, in the case of AdS5×S5, the holographic reduction occurs
if, and only if, the size of the AdS5 throat coincides precisely with the radius
of S5 ensuring a cancellation of the scalar curvatures gµνR

(m)
µν and gabR

(n)
ab in

eq-(2.3) [33] such that the scalar curvature (Einstein-Hilbert Lagrangian) in
D = 10 becomes

R(10) =
e2

4
gab(y) F a

µν(x, y) F b
ρτ (x, y) gµρ(x) gντ (x) +

1
4

gµν(x) gab(y) gcd(y) [ (Dµgac) (Dνgbd)− (Dµgab) (Dνgcd) ]. (2.7)

plus total derivative terms (boundary terms)

Dµ gab = ∂µgab + [ Aµ, gab ].

where the Lie-bracket above is

[ Aµ , gab ] = (∂a Ac
µ(xµ, ya)) gcb(xµ, ya) + (∂b Ac

µ(xµ, ya)) gac(xµ, ya) +

Ac
µ(xµ, ya) ∂c gab(xµ, ya). (2.8)

and the Yang-Mills like field strength is

F a
µν = ∂µ Aa

ν − ∂ν Aa
µ − [ Aµ, Aν ]a =

∂µ Aa
ν − ∂ν Aa

µ − Ac
µ ∂c Aa

ν + Ac
ν ∂c Aa

µ. (2.9)

Eq-(2.7) is nothing but the holographic reduction of the D = 10-dim pure
gravitational Einstein-Hilbert action to a 5-dim Yang-Mills-like action (of dif-
feomorphisms of the internal S5 space) interacting with a charged nonlinear
sigma model (involving the gab field) plus boundary terms. The previous ar-
gument can also be generalized to gravitational actions restricted to de Sitter
spaces, like dSm ×Hn backgrounds as well, where Hn is an internal hyperbolic
noncompact space of constant negative curvarture, and dSm is a de Sitter space
of positive constant scalar curvature.

2.2 Antisymmetric Nonabelian Tensorial Gauge Field The-
ories of p + 1-dim Diffeomorphisms

Given the spacetime vectors and antisymmetric tensor gauge fields in d-dimensions
of rank ≤ d and associated with the diffeomorphisms of an internal p + 1-dim
space
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Aρ = Aa
ρ (xµ, ya)

∂

∂ya
, Aµν = Aa

µν (xµ, ya)
∂

∂ya

Aµνρ = Aa
µνρ (xµ, ya)

∂

∂ya
, etc .... a = 1, 2, 3, ......, p + 1. (2.10)

the Lie-Brackets are defined as follows

[Aµ, Aρ] = [Aµ, Aρ]a
∂

∂ya
=

(
Ab

µ ∂b Aa
ρ − Ab

ρ ∂b Aa
µ

) ∂

∂ya
(2.11a)

[Aµν , Aρ] = [Aµν , Aρ]a
∂

∂ya
=

(
Ab

µν ∂b Aa
ρ − Ab

ρ ∂b Aa
µν

) ∂

∂ya
. (2.11b)

[Aµνρ, Aτ ] = [Aµνρ, Aτ ]a
∂

∂ya
=

(
Ab

µνρ ∂b Aa
τ − Ab

τ ∂b Aa
µνρ

) ∂

∂ya
, etc .......

(2.11c)
The antisymmetric field strengths components are

F a
µν = ∂ν Aa

µ − ∂µ Aa
ν − [Aµ, Aν ]a. (2.12a)

F a
µνρ = ∂ρ Aa

µν + ∂µ Aa
νρ + ∂ν Aa

ρµ − [Aµν , Aρ]a − [Aνρ, Aµ]a − [Aρµ, Aν ]a.
(2.12b)

F a
µνρτ = ∂τ Aa

µνρ − ∂µ Aa
νρτ + ∂ν Aa

ρτµ − ∂ρ Aa
τµν −

[Aµνρ, Aτ ]a + [Aνρτ , Aµ]a − [Aρτµ, Aν ]a + [Aτµν , Aρ]a, etc ..... (2.12c)

The gauge transformations are

δ Aa
µ = ∂µ ξa + [Aµ, ξ]a. (2.13a)

δ Aa
µν = ∂µ ξa

ν − ∂ν ξa
µ + [Aµν , ξ]a. (2.13b)

δ Aa
µνρ = ∂ρ ξa

[µν] + ∂µ ξa
[νρ] + ∂ν ξa

[ρµ] + [Aµνρ, ξ]a, etc ....... (2.13c)

There is a residual symmetry of the gauge parameter ξa
µ given by

ξa
µ → (ξa

µ)′ = ξa
µ + ∂µ Λa. (2.14)

such that it leaves invariant the transformation δAa
µν due to the fact that

∂[µ ∂ν] Λa = 0. There is a residual symmetry of the gauge parameter ξa
[µν]

ξa
[µν] → (ξa

[µν])
′ = ξa

[µν] + ∂[µ Λa
ν]. (2.15)

such that it leaves invariant the transformation δAa
µνρ due to the fact that

15



∂ρ ∂[µ Λa
ν] + ∂µ ∂[ν Λa

ρ] + ∂ν ∂[ρ Λa
µ] = 0. (2.16)

etc.....
One can fix these residual symmetries of the gauge parameters by setting

ξa
µ = ξa

[µν] = ξa
[µνρ] = ......... = 0. (2.17)

such that the gauge transformations become

δ Aa
µ = ∂µ ξa + [Aµ, ξ]a, δ Aa

µν = [Aµν , ξ]a, δ Aa
µνρ = [Aµνρ, ξ]a, etc ......

(2.18)
Under these gauge transformations (2.18) the field strengths transform covari-
antly as

δ F a
µν = [Fµν , ξ]a, δ F a

µνρ = [Fµνρ, ξ]a, δ F a
µνρτ = [Fµνρτ , ξ]a, etc ......

(2.19a)
The tracelike scalar terms Fa

µ1µ2.....µn
Fµ1µ2.....µn

a transform as

δ
(
Fa

µ1µ2.....µn
Fµ1µ2.....µn

a

)
= δ

(
Fa

µ1µ2.....µn

)
Fµ1µ2.....µn

a +

Fa
µ1µ2.....µn

δ ( Fµ1µ2.....µn
a ) = ξb ∂b ( Fa

µ1µ2.....µn
Fµ1µ2.....µn

a ). (2.19b)

resulting from the transformations

δ Fa
µ1µ2.....µn

= [ Fµ1µ2.....µn , ξ ]a = ξc ∂c Fa
µ1µ2.....µn

− Fc
µ1µ2.....µn

∂c ξa

δ Fµ1µ2.....µn
a = [ Fµ1µ2.....µn , ξ ]a = ξc ∂c Fµ1µ2.....µn

a + Fµ1µ2.....µn
c ∂a ξc.

(2.19c)
after relabeling indices and which follow from the definitions of the Lie deriva-
tives of a mixed tensor along a vector field ξa∂a given by eq-(2.2f) . A scalar
density L of weight one under gauge transformations behaves as

δL = [ L, ξ ] = ξa ∂a L + L ∂a ξa = ∂a (ξa L) (2.20)

There is the extra term L ∂a ξa in r.h.s of eq-(2.20) when L is a scalar density
of weight one. Volume-preserving diffs require ∂a ξa = 0 so that the closure of
the algebra of volume-preserving diffs is

[ δξ1 , δξ2 ] = δ[ξ1,ξ2] = δξ3 . (2.21a)

where one can write

ξa
3 = [ξ1, ξ2]a = ξb

1 ∂b ξa
2 − ξb

2 ∂b ξa
1 = ∂b (ξb

1 ξa
2 − ξb

2 ξa
1 ). (2.21b)

resulting from the conditions ∂b ξb
1 = ∂b ξb

2 = 0, so that
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∂a ξa
3 = ∂a ∂b ( ξb

1 ξa
2 − ξb

2 ξa
1 ) = 0. (2.22)

and the algebra closes, since the term inside the parenthesis is antisymmetric
under the exchange of the a↔ b indices while ∂a∂b = ∂b∂a is symmetric.

The covariant Bianchi identities are

Dρ F a
µν + Dµ F a

νρ + Dν F a
ρµ = 0

Dτ F a
µνρ − Dµ F a

νρτ + Dν F a
ρτµ − Dρ F a

τµν = 0

Dµn+1 F a
µ1µ2.......µn

+ signed cyclic permutations = 0. (2.23a)

where

Dµn+1 F a
µ1µ2.......µn

= ∂µn+1 F a
µ1µ2.......µn

+ [ Aµn+1 , Fµ1µ2.......µn
]a. (2.23b)

F a
µ1µ2.......µn

= ∂µn
Aa

µ1µ2.......µn−1
+ [ Aµn

, Aµ1µ2.......µn−1 ]a + signed

cyclic permutations of indices. (2.23c)

In the quenched approximation one has

∂µ Aν (ya) = 0, ∂ρ Aµν(ya) = 0, ∂µ Aνρτ (ya) = 0, ....... . (2.24)

since the fields don’t have a dependence on the spacetime coordinates xµ, there
is only a dependence on the internal coordinates ya . Therefore, in the quenched
approximation one has

F a
µν

∂

∂ya
= ( [Aµ, Aν ]a )

∂

∂ya
(2.25)

F a
µνρ

∂

∂ya
= − ( [Aµν , Aρ]a + [Aνρ, Aµ]a + [Aρµ, Aν ]a )

∂

∂ya
(2.26)

F a
µνρτ

∂

∂ya
= ( − [Aµνρ, Aτ ]a + [Aνρτ , Aµ]a − [Aρτµ, Aν ]a + [Aτµν , Aρ]a )

∂

∂ya

(2.27)
etc .....
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2.3 p-Branes Actions from Antisymmetric Nonabelian Ten-
sorial Gauge Theories of Diffs in p + 1-dim

In section 1 we discussed the results of [12] about Poisson brackets and their de-
formation into Moyal brackets; how the Weyl-Wigner-Groneowold-Moyal (WWGM)
correspondence maps operators into c-functions in phase space and how the
commutators of operators in a Hilbert space are mapped into the Moyal brack-
ets of their corresponding symbols. In particular, in order to implement the
WWGM procedure for gauge theories, one needs to find a representation of the
gauge group in terms of (linear) operators in a Hilbert space and map them,
via the WWGM correspondence, into c-functions in phase space. The unitary
irreducible representations of the infinite-dim group of diffeomorphisms is not
known. To tackle this problem one can propose a morphism (correspondence)
in the quenched approximation among the differential operators (on one side)
and c-functions (on the other side) as follows

For ya = y1, y2 and σi = σ1, σ2

F a
µν(ya)

∂

∂ya
⇔ Fµν = { Aµ, Aν } = εij ∂Aµ(σ)

∂σi

∂Aν(σ)
∂σj

(2.28a)

Under an infinitesimal gauge transformation in the quenched approximation

δ Fµν = { Fµν , Λ } = { {Aµ, Aν}, Λ } = εij ∂{Aµ, Aν}
∂σi

∂Λ(σ)
∂σj

(2.28b)

The third rank antisymmetric tensor correspondence is

F a
µνρ(y

a)
∂

∂ya
⇔ { Aµν , Aρ } + { Aνρ, Aµ } + { Aρµ, Aν }, etc ...... (2.29)

Notice the presence of the second-rank anti-symmetric tensor Aµν(σ) in eq-
(2.29).

For ya = y1, y2, y3 and σi = σ1, σ2, σ3

F a
µν(ya)

∂

∂ya
⇔ { Aµ, Aν } = ωi1i2

∂Aµ

∂σi1

∂Aν

∂σi2
(2.30a)

where ωi1i2 is an antisymmetric tensor (not to be confused with a symplectic
form in even dimensional phase spaces) and the indices i1, i2 ⊂ I = 1, 2, 3. In
section 2.4 will be devoted to the construction of the antisymmetric tensors
ωi1i2 , ωi1i2i3 , ...... required to build brackets like those in eq-(2.30a) when the
rank of the field strength does not match the dimensions of the internal space.

Under a gauge transformation in the quenched approximation

δ { Aµ, Aν } = { { Aµ, Aν }, Λ } =
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ωi1i2 (∂i1 { Aµ, Aν }) (∂i2 Λ). (2.30b)

where Λ is the gauge parameter . The third rank antisymmetric tensor corre-
spondence is

F a
µνρ(y

a)
∂

∂ya
⇔ Fµνρ = { Aµ, Aν , Aρ } = εijk ∂Aµ

∂σi

∂Aν

∂σj

∂Aρ

∂σk
. (2.31a)

Under a gauge transformation in the quenched approximation

δ Fµνρ = { Fµνρ, Λ1, Λ2 } = { {Aµ, Aν , Aρ}, Λ1, Λ2 } . (2.31b)

where now Λ1,Λ2 are two gauge parameters needed to saturate the entries of the
NPB brackets in (2.31a). The fourth rank antisymmetric tensor correspondence
is

F a
µνρτ (ya)

∂

∂ya
⇔ − { Aµνρ, Aτ } + { Aνρτ , Aµ } −

{ Aρτµ, Aν } + { Aτµν , Aρ }, etc ......... (2.32a)

where

{ Aµνρ, Aτ } = ωi1i2 (∂i1 Aµνρ) (∂i2 Aτ ), etc... (2.32b)

Notice the presence of the third-rank anti-symmetric tensors Aµνρ(σ), ...... in
eqs-(2.32a, 2.32b).

For ya = y1, y2, y3, y4 and σi = σ1, σ2, σ3, σ4 one has the mappings

F a
µν(ya)

∂

∂ya
⇔ { Aµ, Aν } = ωi1i2

∂Aµ

∂σi1

∂Aν

∂σi2
(2.33a)

where the indices run now over i1, i2 ⊂ I = 1, 2, 3, 4 and ωi1i2 is an antisym-
metric tensor.

Under a gauge transformation in the quenched approximation

δ { Aµ, Aν } = { { Aµ, Aν }, Λ } (2.33b)

The third rank antisymmetric tensor correspondence is

F a
µνρ(y

a)
∂

∂ya
⇔ { Aµ, Aν , Aρ } = ωi1i2i3

∂Aµ

∂σi1

∂Aν

∂σi2

∂Aρ

∂σi3
(2.34a)

where ωi1i2i3 is an antisymmetric tensor of third rank and the indices i1, i2, i3 ⊂
I = 1, 2, 3, 4

Under a gauge transformation in the quenched approximation

δ { Aµ, Aν , Aρ } = { {Aµ, Aν , Aρ }, Λ1, Λ2 }. (2.34b)

The fourth rank antisymmetric tensor correspondence is
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F a
µνρτ (ya)

∂

∂ya
⇔ Fµνρτ = { Aµ, Aν , Aρ, Aτ} =

εijkl ∂Aµ

∂σi

∂Aν

∂σj

∂Aρ

∂σk

∂Aτ

∂σl
. (2.35a)

Under a gauge transformation in the quenched approximation

δ Fµνρτ = { Fµνρτ , Λ1, Λ2, Λ3 } = { { Aµ, Aν , Aρ, Aτ}, Λ1, Λ2, Λ3 }, etc .......
(2.35b)

In general one has three cases to consider. In the quenched approximation,
when the rank is n = p + 1, the combination of Lie brackets given by

[Aµ1 , Aµ2µ3.......µn
]a ∂ya + signed cyclic permutations of indices (2.36a)

will be mapped to the Nambu brackets

{ Aµ1 , Aµ2 , Aµ3 , .......,Aµp+1 } = εi1i2......ip+1 ∂i1 Aµ1 ∂i2 Aµ2 ....... ∂ip+1 Aµp+1 .
(2.36b)

when n < p + 1, the Lie brackets are mapped to

{ Aµ1 , Aµ2 , Aµ3 , .......,Aµn
} = ωi1i2......in ∂i1 Aµ1 ∂i2 Aµ2 ....... ∂in

Aµn
.

(2.36c)
where ωi1i2......in is an antisymmetric tensor of rank n < p + 1 which is no
longer equal to the epsilon symbol. The bracket (2.36c) must obey the Nambu-
Filippov special condition (the so-called fundamental ”identity”) and which will
restrict the values of ωi1i2......in as we shall see in the next section. The indices
i1, i2, ......, in ⊂ I = 1, 2, 3, ........, p + 1. And when n > p + 1, the Lie brackets
are mapped to

{ Aµn , Aµ1µ2..........µn−1 } + signed cyclic permutations. (2.36d)

where the bracket involving both vectors and antisymmetric tensors is

{ Aµn
, Aµ1µ2..........µn−1 } = ωi1i2 (∂i1 Aµn

) (∂i2 Aµ1µ2..........µn−1). (2.36e)

Having established the one-to-one correspondences in the above equations
(2.28-2.36) among the differential operators in the left hand side and the c-
functions in the right hand side (in terms of brackets) and after replacing the
gauge fields for the coordinates Aµ(σ) ↔ Xµ(σ); Aµν(σ) ↔ Xµν(σ) (a bi-
vector); Aµνρ(σ) ↔ Xµνρ(σ) (a tri-vector); etc .... one can write the actions
associated with the propagation of strings, membranes, p-branes in C-space
target backgrounds characterized by Clifford poly-vector valued coordinates and
which shall be discussed at the end of this work.

In the meantime, we arrive now at one of the main results of this work : given
an antisymmetric nonabelian tensorial gauge field theory of diffeomorphisms of
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an internal p + 1-dim space one may establish the correspondence with the
reparametrization invariant p-brane action, via a covariant trace operation,
given in terms of a dynamical measure J = { φ1, φ2, ......., φp+1} which is a
function of p + 1 auxiliary scalars φ1(σ), φ2(σ), ......, φp+1(σ) as follows :

The relevant gauge invariant action in a d dimensional base spacetime of
Lorentzian signature associated with an antisymmetric nonabelian tensor gauge
field strength corresponding to the diffeomorphisms of an internal p + 1-dim
space is

S = − 1
g2

∫
ddx dp+1y

√
|g|

√
|h| hab F a

µ1µ2....... µp+1
F b

ν1ν2...... νp+1
×

gµ1ν1 gµ2ν2 ........ gµp+1νp+1 . (2.37)

we can omit factorials 1/(p+1)! in (2.36) by imposing the ordering prescription
µ1 < µ2 < µ3 < .......... < µp+1. The coupling g−2 in (2.37) has dimen-
sions of lp+1−d where l is a suitable length scale to ensure that the integral
is dimensionless. The dimension of Fµ1µ2.....µp+1 is l−p−1. As shown in eq-
(2.1), the metric components gµν(xµ, ya); hab(xµ, ya) and the antisymmetric
field strengths F a

µ1µ2....... µp+1
(xµ, ya) in eq-(2.37) depend in general on the base

spacetime coordinates xµ and on the internal space coordinates ya as well.
As mentioned earlier, the Lie bracket of a scalar Lagrangian density L =√
|g|

√
|h| ||F2|| of weight one and the vector field ξ = ξa∂a is defined as

[ ξ, L ] = ξa ∂a L + L ∂a ξa = ∂a (ξa L) (2.38a)

there is a second extra term in the r.h.s of (2.38a), so that under infinitesimal
gauge transformations acting on the fields (and not on the coordinates) given
by eqs-(2.18, 2.19), the action S transforms as

δξ S =
∫

ddx dp+1y [ ξ, L ] =
∫

ddx dp+1y ∂a (ξa L) = 0. (2.38b)

the integral of a total derivative

δξ S =
∫

ddx

∫ +∞

−∞
dp+1y ∂a ( ξa L ) = 0. (2.38d)

vanishes if ξaL vanishes at ya = ±∞ and/or there are no boundaries in the
integration domain of the ya variables (the integration domain has compact
support). Hence, the action (2.37) is gauge invariant.

In the very special case of the quenched approximation there is no depen-
dence on the xµ variables so eq-(2.37) can be written in terms of a covariant
trace operation as

S = − 1
g2

[ ∫
ddx

]
Trace

[
Fµ1µ2.....µp+1 Fµ1µ2......µp+1

]
. (2.39)
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one can pull out the volume Vd factor in d-dim ouside the integral. By recurring
to the fields/coordinates correspondence Aµ ↔ Xµ, Aµν ↔ Xµν (bi-vectors)
...... in eqs-(2.28-2.36), the above covariant trace of the square of the antisym-
metric nonabelian tensor gauge field strength, associated with the diffeomor-
phisms of the internal p + 1-dim space in the quenched approximation, has a
correspondence with the covariant p-brane action given by

−Vd

g2
Trace

[
Fµ1µ2.....µp+1 Fµ1µ2......µp+1

]
=

−Vd

g2

∫
dp+1y

√
|g|

√
|h| hab F a

µ1µ2....... µp+1
F b

ν1ν2...... νp+1
gµ1ν1 gµ2ν2 ........ gµp+1νp+1

⇔ − 1
lp+1

∫
dp+1σ

(
{ φ1, φ2, ......., φp+1 }

)−1 Fµ1µ2....... µp+1 Fν1ν2...... νp+1 ×

Gµ1ν1(X) Gµ2ν2(X) ......... Gµp+1νp+1(X) =

− 1
lp+1

∫
dp+1σ

(
{ φ1, φ2, ......., φp+1 }

)−1 { Xµ1 , Xµ2 , .........., Xµp+1 } ×

{ Xν1 , Xν2 , .........., Xνp+1 } Gµ1ν1(X) Gµ2ν2(X) ......... Gµp+1νp+1(X). (2.40)

The trace becomes an integral w.r.t the p-brane coordinates. Notice that one
must not confuse the xµ coordinates in eq-(2.36) with Xµ(σ). Also relevant,
besides the Aµ ↔ Xµ correspondence, is gµν(ya) ↔ Gµν(Xρ(σa)). In flat target
spacetime backgrounds Gµν(Xρ(σa)) = ηµν one can pull the target spacetime
metric inside the brackets such that the action (2.40) can be rewritten as

− 1
lp+1

∫
dp+1σ

(
{ φ1, φ2, ......., φp+1 }

)−1 { Xµ1 , Xµ2 , .........., Xµp+1 }2 .

(2.41)
One can eliminate the p+1 auxiliary scalars fields φi(σ) in eq-(2.41) which com-
prise the dynamical measure field J ≡ { φ1, φ2, ......., φp+1 } after performing
an Euler variation of the action (2.41) w.r.t the scalars φi(σ). Hence, an Euler
variation w.r.t the φ1(σ) field gives

−∂a1

δS

δ(∂a1φ
1)

= εa1a2a3.....ap+1 (∂a2φ
2) (∂a3φ

3) .......(∂ap+1φ
p+1) ×

∂a1

(
J−2 { Xµ1 , Xµ2 , .........., Xµp+1 }2

)
= 0. (2.42a)

since

∂a1

[
εa1a2a3.....ap+1 (∂a2φ

2) (∂a3φ
3) ....... (∂ap+1φ

p+1)
]

= 0. (2.42b)

Similar equations as (2.42) are obtained from the Euler variation w.r.t the
φ2(σ), ......., φp+1 fields by replacing the derivative ∂a1 in eqs-(2.42) with the
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derivatives ∂a2 , ∂a2 , .......∂ap+1 Therefore, from the p + 1 equations of the form
(2.42) one learns that

2
∂a J
J

=
∂a { Xµ1 , Xµ2 , .........., Xµp+1 }2

{ Xµ1 , Xµ2 , .........., Xµp+1 }2
, a = 1, 2, ...., p+1, integrating ⇒

J = { φ1, φ2, ......., φp+1 } =
√
{ Xµ1 , Xµ2 , .........., Xµp+1 }2. (2.43)

Substituting the measure field (2.43) into the action (2.40) furnishes the Dirac-
Nambu-Goto reparametrization-invariant p-brane action under σa → σ̃a of the
form

S = − 1
lp+1

∫
dp+1σ

√
|{ Xµ1 , Xµ2 , .........., Xµp+1 }{ Xµ1 , Xµ2 , .........., Xµp+1 }|.

(2.44)
where we have omitted factorials 1/(p + 1)! inside the square root of (2.44) by
imposing the ordering prescription µ1 < µ2 < µ3 < .......... < µp+1 and taken
the absolute sign to ensure that the contribution of the NPB terms inside the
square root is positive-definite. The NPB terms inside the square root coincide
with the absolute value of the determinant of the (p+1)×(p+1) induced metric
gab resulting from the embedding of the p + 1-dim world volume of the p-brane
onto the flat target spacetime D-dim background

gab = (∂aXµ) (∂bX
ν) ηµν , |det gab | = |{ Xµ1 , Xµ2 , .........., Xµp+1 }2| ⇒

S = − Tp

∫
dp+1σ

√
| det (∂aXµ ∂bXν ηµν) | (2.45)

where we have identified the p-brane tension Tp with l−p−1 in (2.45). It is
important to remark that the world volume coordinates σ0, σ1, ......, σp involve
one temporal coordinate σ0 (the p-brane’s clock) and p spatial coordinates.
The d-dim base spacetime has a temporal coordinate x0 and d− 1 spatial ones
x1, x2, ...., xd−1.

There are other actions that do not correspond to the standard p-brane
actions. In general one must have that d must be greater or equal to the rank
of the antisymmetric field strength, and d ≥ p+1, resulting from the gauge fields
/p-brane coordinates correspondence Aµ ↔ Xµ. There are two other cases to
consider : when the rank is greater or less than p + 1. For example, in the case
that a = 1, 2, 3, in a flat target background, and setting the coupling g2 = 1,∫

d3y
√
|g|

√
|h| hab F a

µ1µ2
F b

ν1ν2
gµ1ν1 gµ2ν2 ⇔∫

d3σ J (φi)−1 { Xµ1 , Xµ2 }2 (2.46a)
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where

{ Xµ1 , Xµ2 } = ωi1i2 (∂i1 Xµ1) (∂i2 Xµ2), i1, i2 ⊂ I = 1, 2, 3. (2.46b)

once again we have the antisymmetric tensor ωi1i2 that must not be confused
with a symplectic form in an even-dim phase space as we shall see in the next
section. After eliminating the auxiliary scalars φi in eq-(2.46a) it leads to a
”string-membrane” hybrid action of the form∫

d3σ
√
{ Xµ1 , Xµ2 }2 (2.47)

where the spacetime coordinates depend on the three membrane coordinates
Xµ(σ0, σ2, σ3); µ = 1, 2, 3, .......d and d ≥ 3.

In the case when a = 1, 2, in a flat target background, setting the coupling
g2 = 1, ∫

d2y
√
|g|

√
|h| hab F a

µ1µ2µ3
F b

ν1ν2ν3
gµ1ν1 gµ2ν2 gµ3ν3 ⇔∫

d2σ J (φi)−1 ( { Xµ1µ2 , Xµ3 }+ cyclic ) ( { Xµ1µ2 , Xµ3 }+ cyclic ) .

(2.49)
where Xµ1µ2(σ) are the bi-vectors coordinates of the C-space associated with
the Clifford algebra of the target spacetime. By ”cyclic” in (2.49) one means a
cyclic permutation of the indices. After eliminating the auxiliary scalars φi in
(2.49) it leads to a Dirac-Born-Infeld-like action of the form

∫
d2σ

√
( { Xµ1µ2 , Xµ3 }+ cyclic ) ( { Xµ1µ2 , Xµ3 }+ cyclic ) (2.50)

The Eguchi-Schild p-brane action (setting Tp = 1)

∫
dp+1σ { Xµ1 , Xµ2 , .........., Xµp+1 } { Xµ1 , Xµ2 , .........., Xµp+1 } . (2.51)

is not fully reparametrization invariant under σa → σ̃a, but only invariant un-
der p + 1-volume-preserving diffs leaving the NPB invariant. In order to obtain
a fully reparametrization invariant p-brane action one needs to have a covariant
trace operation defined in terms of a dynamical measure J = { φ1, φ2, ......., φp+1}
expressed in terms of p+1 auxiliary scalars φ1(σ), φ2(σ), ......, φp+1(σ) as shown
above.

The reparametrization-invariant action (Tp = 1) involving the auxiliary
scalar-density e(σ)

∫
dp+1σ

1
e(σ)

{ Xµ1 , Xµ2 , .........., Xµp+1 } { Xµ1 , Xµ2 , .........., Xµp+1 } .

(2.52)
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is problematic because a variation w.r.t the auxiliary scalar-density e(σ) field
leads to a zero action. The proper reparametrization-invariant Eguchi-Schild
p-brane action has a cosmological constant term of the form

∫
dp+1σ

[
1

e(σ)
1

(p + 1)!
{ Xµ1 , Xµ2 , .........., Xµp+1 }2 − e(σ)

]
. (2.53)

eliminating e(σ) via its equations of motion leads once again to the Nambu-
Goto-Dirac p-brane action. The advantage of introducing the dynamical mea-
sure J = {φ1, φ2, ......, φp+1} in the action (2.40) is that one can eliminate J , via
the equations of motion of the scalars φi(σ), without constraining the action
to zero nor introducing a cosmological constant term. A dynamical measure
J = {φ1, φ2, ......, φp+1} was originally introduced by [10] and has many appli-
cations in many realms of Physics. Scalar fields have also been introduced by
[53] in his formulation of the so-called ”wiggly” branes.

2.4 N-ary Algebras, Kalb-Ramond couplings, Chern-Simons
Branes and Dualities

This section would not be complete without a discussion of n-ary brackets
{X1, X2, ......, Xn} for the case that n ≤ p + 1 ≤ d. The brackets should
obey the Nambu-Filippov special condition (fundamental ”identity”) that can
be written as a derivation with respect vectors and ”poly-vectors” as

DX {Y 1, Y 2} = { X, {Y 1, Y 2} } = { {X, Y 1}, Y 2 } + { Y 1, {X, Y 2} }.
(2.54)

D{X1,X2} {Y 1, Y 2, Y 3} = { X1, X2, {Y 1, Y 2, Y 3} } =

{ {X1, X2, Y 1}, Y 2, Y 3 }+ { Y 1, {X1, X2, Y 2}, Y 3 }+ { Y 1, Y 2, {X1, X2, Y 3} }.
(2.55)

D{X1,X2,X3} {Y 1, Y 2, Y 3, Y 4} = { X1, X2, X3, {Y 1, Y 2, Y 3, Y 4} } =

{ {X1, X2, X3, Y 1}, Y 2, Y 3, Y 4 } + { Y 1, {X1, X2, X3, Y 2}, Y 3, Y 4 } +

{ Y 1, Y 2, {X1, X2, X3, Y 3}, Y 4 }+ { Y 1, Y 2, Y 3, {X1, X2, X3, Y 4} } (2.56)

etc ..... For n-ary brackets, Nambu showed that the Jacobian (the classical
Nambu bracket)

{X1, X2, ........, Xn} = εi1i2.....in ∂i1X
1 ∂i2X

2 ........ ∂in
Xn. (2.57)
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satisfies the Nambu-Filippov special conditions, [38], [40]. It is highly nontrivial
to satisfy these conditions for brackets involving different structure functions
(constants) than the epsilon symbols and comprised of antisymmetric tensors
ωi1i2 , ωi1i2i3 , ..... For instance, given n < p + 1, the brackets are defined by

{X1, X2, ........, Xn} = ωi1i2.....in ∂i1X
1 ∂i2X

2 ........ ∂in
Xn. (2.58)

where the indices are i1, i2, .....in ⊂ I = 1, 2, 3, ......., p + 1 such that one has
(p + 1)!/(p + 1 − n)!n! different sets of combinations of indices with respect to
which one can take the derivatives in (2.58).

Given n ≤ p + 1 ≤ d and after recurring to the ansatz

{ σi1 , σi2 } = ωi1i2(σ) =

f [i1i2] + f
[i1i2]
j1

σj1 + f
[i1i2]
j1j2

σj1 σj2 + ........ (2.59a)

{ σi1 , σi2 , σi3 } = ωi1i2i3(σ) =

f [i1i2i3] + f
[i1i2i3]
j1

σj1 + f
[i1i2i3]
j1j2

σj1 σj2 + ........ (2.59b)

{ σi1 , σi2 , ............, σin } = ωi1i2....in(σ) =

f [i1i2.......in] + f
[i1i2......in]
j1

σj1 + f
[i1i2......in]
j1j2

σj1 σj2 + ........ (2.59c)

and finally
{ σi1 , σi2 , ............, σip+1 } = εi1i2.......ip+1 . (2.59d)

leads to a general family of structure functions (constants) that one can use in
the definitions of the brackets. The constants f [i1i2.......in] are antisymmetric in
the i indices. The constants f

[i1i2......in]
j1j2....jm

are antisymmetric in the upper i indices
but symmetric in the lower j indices. The Nambu-Filippov special conditions
will restrict the form of the plausible structure functions (constants) of (2.59)
in a very stringent fashion [40]. The particular terms f

[i1i2......in]
j1

σj1 (linear in
the σ’s) in the r.h.s of eqs-(2.59) correspond to an n-ary Filippov-Lie algebraic
structure. Hence, if one constrains all the terms in the r.h.s of eqs-(2.59) to zero,
except the former ones, the Nambu-Filippov special conditions on the structure
constants of the Filippov-Lie algebra become [36] (and references therein)

f [i1i2......in]
c f

[k1k2......kn]
in

=
j=n∑
j=1

f
[i1i2......in−1kj ]
d f [k1k2....kj−1 d kj+1.......kn]

c .

(2.59e)
Despite the difficulties in finding solutions for the structure constants obeying
eq-(2.59e), for all practical purposes, the most relevant case to consider is the one
which leads to p-brane actions based on (2.37); i.e. the case when n = p+1, such
that the relevant brackets coincide precisely with the Nambu-Poisson brackets

26



involving the epsilon symbol which obey the Nambu-Filippov special conditions
(fundamental ”identity”).

We finalize this section by pointing out an interesting relation between Kalb-
Ramond couplings to branes, Chern-Simons branes and the duality among fields
variables and branes coordinates. Let us begin with the integral given by the
following Kalb-Ramond coupling∫

∂Mn

Ai1i2......in−1(X) dXi1 ∧ dXi2 ∧ .......... ∧ dXin−1 =

∫
Mn

Fi1i2......in−1in
(X) dXi1 ∧ dXi2 ∧ .......... ∧ dXin−1 ∧ dXin . (2.60)

where the Abelian field strength which allowed us to use Stokes theorem is
F = dA. In the particular case when the Kalb-Ramond field is of the form

Ai1i2......in−1(X) = εi1i2.......in−1in Xin . (2.61)

one has for the expressions in eq-(2.60)∫
∂Mn

εi1i2.......in−1in
Xn dXi1 ∧ dXi2 ∧ .......... ∧ dXin−1 =

∫
Mn

εi1i2......in(X) dXi1 ∧ dXi2 ∧ ......... ∧ dXin−1 ∧ dXin . (2.62)

since the indices i1, i2, ....., in ⊂ I = 1, 2, 3, ......, n, the last integral (2.62) is
just the n-dim volume of a bulk region Mn whose n − 1-dim boundary ∂Mn

is the world-volume of a Chern-Simons n − 2-brane; i.e. the first integral of
(2.62) is the action of a Chern-Simons p-brane such that its p + 1-dim world
volume is the boundary of a p + 2-dim bulk region. In our case p = n − 2. In
one wishes to preserve translational invariance in the target spacetime for the
Chern-Simons action, the coordinates X should be defined w.r.t to a reference
point X(σ)−X(σ = 0), see [35] for details.

The loop transform (section 1) in the Abelian case is just a duality among
Aµ1µ2......µn−1 and Xµ1µ2.....µn−1 . Using the gauge fields /brane coordinates cor-
respondence in (2.60) one infers that

Ai1i2......in−1(X) ↔ Xi1i2.....in−1 ⇒ Xi1i2.....in−1 ↔ εi1i2.......in−1in
Xin .

(2.63)
hence, eq-(2.63) states how one has a Hodge duality among the poly-vector
valued coordinate Xµ1µ2.....µn−1 with the vector valued Xµn coordinate in n-
dim. In section 1 we discussed the gauge fields/coordinates correspondence via
a ”Fourier”-like Wilson-Loop transform. These dualities are important for our
discussion of branes in C-spaces in section 4, in particular how to extend the
discussion above to the nonabelian case.
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3 Super p-branes, Covariant Matrix Models and
Gauged Nonlinear σ Models

These results for the bosonic covariant p-brane actions should apply to the
covariant super p-brane actions [34]

S = −Tp

∫
dp+1σ

[ √
− det (Πµ

i Πν
j ηµν) +

2
(p + 1)!

εi1i2.......ip+1 Bi1i2......ip+1

]
.

(3.1)
which is an integral over the p + 1-dim world volume of the p-brane moving in
a target superspace of local coordinates ZM = Xµ, θα (a Majorana spinor); ηµν

is the metric of the D-dim Minkowski spacetime; the second term in (3.1) is the
Wess-Zumino term where the coefficients Bi1i2......ip+1 are

Bi1i2......ip+1 = − η

(p + 1)!
εi1i2....ip+1 θ̄ Γµ1µ2......µp

∂ip+1 θ ×

p∑
r=0

ir+1 Cp+1
r+1 (θ̄Γµ1∂i1θ) ........ (θ̄Γµr∂irθ) Πµr+1

ir+1
.......... Πµp

ip
. (3.2)

Cp+1
r+1 are the binomial coefficients (p + 1)!/(r + 1)!(p− r)!, η = (−1)(p−1)(p+6)/4

and the super-vielbeins

Πµ
i = ∂i Xµ − iθ̄ Γµ ∂i θ. (3.3)

are the components of the pullback to the world volume of the supersymetric
invariant one-form Πµ = dXµ− iθ̄Γµdθ. The determinant can also be rewritten
as

det (Πµ
i Πν

j ηµν) = < Πµ1 , Πµ2 , ........, Πµp+1 > < Πµ1 , Πµ2 , ........, Πµp+1 > .
(3.4)

where the analog of the bracket among the Πµ
i variables is defined as [36]

< Πµ1 , Πµ2 , Πµ3 , ........, Πµp+1 > = εi1i2.......ip+1 Πµi1
i1

Πµi2
i2

.......... Π
µip+1
ip+1

=

p+1∑
n=0

Cp+1
n in (−1)n(n+1)/2 θ̄α1 θ̄α2 ........ θ̄αn

×

{ (Γµ1θ)α1 , (Γµ2θ)α2 , ........, (Γµnθ)αn , Xµn+1 , Xµn+2 , ........, Xµp+1 }NPB .
(3.5)

Cp+1
n are the binomial coefficients (p + 1)!/n!(p + 1− n)!.

The Fierz identity required for the construction of supersymmetic invariant
actions restricts the possible values of p and the target spacetime dimension D.
The light-cone gauge-fixed action of the super p-brane action for the restricted

28



values of p and D was constructed by [34]. For the membrane case p = 2
(in D = 4, 5, 7, 11) the gauge-fixed action (excluding the zero mode sector) is
equivalent to that of a one-dim super Yang-Mills theory of the area-preserving
diffs group of the membrane. For p > 2, the authors [34] have shown that the
light-cone gauge-fixed action is that of a new kind of supersymmetric gauge
theory of p-volume preserving diffs associated with the p spatial dimensions of
the extended object. Therefore, after gauge fixing, the original p + 1-dim diffs
associated with the p + 1-dim world volume of the p-brane is reduced to the p-
volume-preserving diffs associated with the p spatial dimensions of the p-brane.
The authors [34] conjectured that the new kind of supersymmetric gauge theory
is related to an infinite-dim nonabelian anti-symmetric gauge theory. Hence,
we propose that this new theory should be part of (the supersymmetric version)
of the antisymmetric nonabelian tensor gauge field theory of p + 1-dim diffs in
d-dim constructed in section 2.

To illustrate this, let us begin with the light-cone gauge-fixed action of the
super p-brane action for p = 1, 2, 3, 4, 5 (excluding the zero modes sector)

I =
1
2

∫
dp+1σ

[
(DoX

I)2 + iS̄ DoS − det ( hab ) − ipS̄ γaγ ∂aS
]
.

(3.6)
The world volume clock τ is defined as X+ = 1√

2
(X0+Xd−1) = x++p+τ ; x+, p+

are the center of mass position and momentum of the p-brane, respectively. XI ,
for I = 1, 2, 3, ......, d − 2, are the transverse bosonic coordinates; S is a spinor
of the SO(d− 2) transverse Lorentz group. The determinant is

det ( hab ) = { XI1 , XI2 , ......., XIp } { XI1 , XI2 , ......., XIp
}. (3.7)

the reduced γ-matrices satisfy

{γI , γJ} = 2 δIJ , tr ( γIγJ ) = (D− p− 1) δIJ , γ2 = det ( hab ). (3.8)

the pull-back to the world volume of the anti-symmetrized products of the
gamma’s is

γa1a2.....an
= ∂a1 XI1 ∂a2 XI2 .......∂an

XIn γI1I2......In
. (3.9)

γ =
η

p!
εa1a2.....ap ∂a1 XI1 ∂a2 XI2 .......∂ap XIp γI1I2......Ip , η = (−1)(p−1)(p+6)/4.

(3.10)
The ”covariant” time derivative is

Do XI =
∂XI

∂τ
+ Aa

o ∂a XI(τ ;σ1, σ2, ......, σp). (3.11)

the gauge field Aa
o is required to satisfy

∂a Aa
o = 0 ⇒ Aa

o = εaa1a2......ap−1 ∂a1A
1 ∂a2A

2.......∂ap−1A
p−1. (3.12)
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where A1, A2, ......, Ap−1 are auxiliary functions so that the derivative can be
rewritten as

Do XI =
∂XI

∂τ
+ Aa

o ∂a XI =
∂XI

∂τ
+ { A1, A2, ..........., Ap−1, XI }NPB .

(3.13)
The action ( 3.6) has the following gauge invariance ( for p ≥ 2 )

δXI = λa ∂a XI , δS = λa ∂a S

δAa
o = ∂τ λa + [ Ao, λ ]a = ∂τ λa + Ab

o ∂b λa − λb ∂b Aa
o . (3.14)

where the gauge parameter is required to obey

∂a λa = 0 ⇒ λa = εaa1a2......ap−1 ∂a1Λ
1 ∂a2Λ

2.......∂ap1
Λp−1. (3.15)

where Λ1,Λ2, ......,Λp−1 are auxiliary functions so that eqs-(3.14) can be rewrit-
ten as

δXI = { Λ1, Λ2, ..........., Λp−1, XI }NPB

δS = { Λ1, Λ2, ..........., Λp−1, S }NPB

δAa
o = ∂τ λa + { A1, A2, ..........., Ap−1, λa } − { Λ1, Λ2, ..........., Λp−1, Aa

o }.
(3.16)

For p ≥ 3 there is an extra symmetry obtained by rewriting Aa
o = ∂b Υ[ab],

where
Υ[ab] = εa1a2.......ap−2ba Ap−1 ∂a1A

1 ....... ∂ap−2A
p−2 . (3.17)

such thatAa
o is invariant under the transformation which is not of the Yang-Mills

type
Υab → Υab + ∂c Λ[abc]. (3.18)

where Λ[abc](σa) is an arbitrary function of σa.
After this brief review of super p-branes and the light-cone gauge one can

return to the results of the previous section where (by dropping the measure fac-
tors for convenience) the dimensional reduction of the d-dim nonabelian gauge
theory of 2-dim diffs of the internal space down to one temporal dimension has
for action ∫

dt Trace Fa
µν Fµν

a ⇔∫
dt

∫
d2σ

(
∂t XI(t;σ0, σ1) + { At, XI }

)2
+ { XI , XJ } { XI , XJ } .

(3.19)
I, J = 1, 2, 3, ......, d − 1. Despite that ( 3.19) has the same functional form
as the light-cone gauge-fixed membrane action, the former action differs from
the light-cone membrane action in several aspects : (i) The range of the target
spacetime indices is now 1, 2, 3, .......d−1 instead of the 1, 2, 3, ......d−2 transverse
coordinates in the light-cone gauge. (ii) the spacetime temporal variable t is no
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longer the same as the the world volume clock parameter τ of the light-cone
gauge membrane action. (iii) σ0, σ1 are the two world sheet coordinates ( one
temporal and one spatial ) associated with the motion of a string through the
d-dim target spacetime, and not the two spatial coordinates of the 3-dim world
volume of a membrane. (iv) there is no constraint imposed on the Aa

0 gauge
field like ∂a Aa

0 = 0.
The dimensional reduction of the d-dim rank-three antisymmetric nonabelian

tensorial gauge theory of 3-dim diffs of the internal space down to one temporal
dimension involves the action∫

dt Trace Fa
µνρ Fµνρ

a ⇔∫
dt

∫
d3σ

(
∂t XIJ + { At, XI , XJ }

)2
+ {XI , XJ , XK } {XI , XJ , XK }.

(3.20)
The action (3.20) clearly does not correspond to the light-cone gauge-fixed action
of a 3-brane since it contains the bi-vectors XIJ and vector XI coordinates. In
general, after dropping measure factors, the dimensional reduction of the d-dim
rank-p + 1 antisymmetric nonabelian tensorial gauge theory of p + 1-dim diffs
of the internal space down to one temporal dimension involves the action∫

dt Trace Fa
µ1µ2....µp+1

Fµ1µ2....µp+1
a ⇔∫

dt

∫
dp+1σ

(
∂t XI1I2.....Ip + { At, XI1 , XI2 , ..... XIp }

)2
+

{ XI1 , XI2 , ............, XIp+1 } { XI1 , XI2 , ......., XIp+1 }. (3.21)

The action (3.21) clearly does not correspond to the light-cone gauge-fixed action
of a p′ = p + 1-brane since it contains the poly-vectors XI1I2....Ip in addition
to the vector XI coordinates. Nevertheless, the action (3.21) can be recast in
the same functional form as a gauged nonlinear sigma model plus the square of
NPB terms, when

AI1I2.....Ip ⇔ XI1I2.....Ip = εI1I2.....Ip+1 XIp+1 . (3.22a)

after the mapping

[ At, AI1I2.....Ip ]a ∂ya ⇔ { At, AI1I2.....Ip } ⇔ εI1I2.....Ip+1 { At, XIp+1 }.
(3.22b)

so that

∂t XI1I2.....Ip + { At, XI1I2.....Ip } = εI1I2.....Ip+1
(
∂t XIp+1 + { At, XIp+1 }

)
.

(3.23)
upon squaring (3.23), dividing by (p+1)! and adding the square of NPB terms,
one arrives at∫

dt dp+1σ [
(
∂t XIp+1 + { At, XIp+1 }

)2 + { XI1 , XI2 , ............, XIp+1 }2].

(3.24)
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Upon rewriting

{ At, XIp+1 } = ωab (∂a At) (∂b XIp+1) = Ãb
t ∂b XIp+1 , Ãb

t ≡ ωab ∂a At,
(3.25)

one can see that the action in eq-(3.24) has the same functional form as the
action of a one-dim gauged nonlinear sigma model based on the gauge group of
diffs in p + 1-dim, whose target spacetime variables are XI(t; σ0, σ1, ....., σp),
the one-dim gauge field is Ãb

t(t; σ0, σ1, ...., σp); plus the NPB squared terms
which play the role of the potential terms. The authors [36] have shown that
when a p′-brane is extended over two topologically different spaces : over a
compact d1-dim and a non-compact d2-dim region such that p′ + 1 = d1 + d2,
the p′-brane action can be written as a d2-dim gauged non-linear sigma model
based on the group of diffs in d1-dim, plus Nambu-brackets squared terms and
a cosmological constant term involving an auxiliary field ω∫

dd2z

∫
dd1y

√
|g| gαβ [ (DαXI) (DβXI) +

ωd2−1

4(d1)!
{XI1 , XI2 , ......., XId1}2NB − (d2 − 1) ω ]. (3.26a)

DαXI = ∂α XI + Ãa
α ∂a XI ; gαβ(zα; ya)

α, β = 1, 2, ....., d2; a, b = 1, 2, ....., d1; XI (zα; ya); Ãa
α (zβ ; yb). (3.26b)

The physical interpretation of (3.26) is that of a p′-brane whose p′+1-dim world
volume (p′ + 1 = d1 + d2) can be seen as a ”condensate” of lower dimensional
p′′-branes such that p′′ + 1 = d1. When d2 = 1, one can see that the action
(3.26) has the same functional form as (3.24) after using eq-(3.25) and setting
gαβ = ηαβ , p+1 = p′′+1 = d1 = p′. When d2 = 0, the action (3.26) reduces to
the covariant form of the Eguchi-Schild p′-brane action (p′ + 1 = d1) involving
the auxiliary field ω.

To finalize this section we discuss why the large N limit of covariant Ma-
trix Models based on generalized n-th power matrices [39] Xi1i2......in , that
are extensions of square, cubic, quartic, .... matrices, should bear a relation-
ship to Eguchi-Schild p-brane actions for p + 1 = n. The range of indices is
i1, i2, ..., in ⊂ I = 1, 2, .....N . By analogy to the results of section 1 for ordinary
square matrices, the n-ary commutator of n generalized n-th power matrices in
the large N →∞ limit should have a correspondence with the Nambu-brackets

[ X1, X2, ......., Xn ]i1i2......in → { X1, X2, ......., Xn }NB . (3.27)

by replacing Xi1i2......in
for the c-function of n-variables X(σ1, σ2, ...., σn). The

trace operation in the large N limit has a correspondence with the integral∫
dnσ so that

Trace
(

[ X1, X2, ......., Xn ]2
)
→

∫
dnσ {X1, X2, ......., Xn }2NB , n = p+1.

(3.28)
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recovering in this fashion the Eguchi-Schild p-brane actions for p + 1 = n. The
fermionic version of (3.28) is

∫
dnσ Ψ̄ Γ12....n−1 { X1, X2, ......., Xn−1 ,Ψ}, n = p + 1. (3.29)

The functional form of the terms (3.28, 3.29) is the same as that of the last two
terms appearing in (3.6). Missing in (3.28, 3.29) is the corresponding kinetic
terms of (3.6). A different approach to obtain super-p-brane actions than taking
the large N limit of n-ary commutators of generalized matrices can be found in
[36].

The deformation quantization of Nambu brackets for arbitrary values of n is
not known at the present. For even n one could decompose the Nambu bracket
into sums of products of ordinary Poisson brackets, then deform them into
Moyal brackets and their products into Moyal products. For odd values of n this
procedure does not work [40]. A deformation quantization of Nambu Classical
Mechanics (brackets) to furnish Nambu Quantum Mechanics by constructing
the n-ary analog of the Moyal bracket and the Weyl-Wigner-Groenowold-Moyal
map among operators and c-functions remains an open problem.

4 Generalized p-brane actions in Clifford Spaces

The Extended Relativity theory in Clifford-spaces ( C-spaces ) is a natural
extension of the ordinary Relativity theory [43]. For a comprehensive review we
refer to [42] . A natural generalization of the notion of a space-time interval in
Minkowski space to C-space is

dX2 = dX0 dX0 + dxµ dxµ + dxµν dxµν + ...... (4.1)

The Clifford valued poly-vector is defined by

X = XM EM = X0 1 + xµ γµ + xµν γµ ∧ γν + ... xµ1µ2....µDγµ1 ∧ γµ2 .... ∧γµD
.

(4.2)
denotes the position of a polyparticle in a manifold, called Clifford space or C-
space. The series of terms in (4.2) terminates at a finite value depending on the
dimension D. A Clifford algebra Cl(r, q) with r + q = D has 2D basis elements.
For simplicity, the gammas γµ correspond to a Clifford algebra associated with
a flat spacetime

1
2
{γµ, γν} = ηµν 1. (4.3)

but in general one could extend this formulation to curved spacetimes with
metric gµν . The multi-graded basis elements EM of the Clifford-valued poly-
vectors are

33



EM ≡ 1, γµ, γµ1∧γµ2 , γµ1∧γµ2∧γµ3 , γµ1∧γµ2∧γµ3∧.....∧γµD . (4.4)

It is convenient to order the collective M indices as µ1 < µ2 < µ3 < ...... < µD.
The connection to strings and p-branes can be seen as follows. In the case of

a closed string (a 1-loop) embedded in a target flat spacetime background of D-
dimensions, one represents the projections of the closed string (1-loop) onto the
embedding spacetime coordinate-planes by the variables xµν . These variables
represent the respective areas enclosed by the projections of the closed string
(1-loop) onto the corresponding embedding spacetime planes. Similary, one can
embed a closed membrane (a 2-loop) onto a D-dim flat spacetime, where the
projections given by the antisymmetric variables xµνρ represent the correspond-
ing volumes enclosed by the projections of the 2-loop along the hyperplanes of
the flat target spacetimr background. This procedure can be carried to all
closed p-branes ( p-loops ) where the values of p are p = 0, 1, 2, 3, ....D − 2.
The p = 0 value represents the center of mass and the coordinates xµν , xµνρ....
have been coined in the string-brane literature [46] as the holographic areas,
volumes, ...projections of the nested family of p-loops (closed p-branes) onto the
embedding spacetime coordinate planes/hyperplanes.

If we take the differential dX and compute the scalar product among two
polyvectors < dX†dX >scalar [44] , [45] , [47] we obtain the C-space extension
of the particles proper time in Minkowski space. The symbol X† denotes the
reversion operation and involves reversing the order of all the basis γµ ele-
ments in the expansion of X . It is the analog of the transpose ( Hermitian )
conjugation (γµ ∧ γν)† = γν ∧ γµ, etc... Therefore, the inner product can be
rewritten as the scalar part of the geometric product as < X†X >scalar . The
analog of an orthogonal matrix in Clifford spaces is R† = R−1 such that

< X ′† X ′ >scalar = < (R−1)† X† R† R X R−1 >scalar=

< R X† X R−1 >scalar = < X† X >scalar=

(X0)2 + Λ2D−2 (xµxµ) + Λ2D−4 (xµνxµν) + .... + (xµ1µ2.....µD
)(xµ1µ2.....µD )

(4.5)
we have explicitly introduced the Planck scale Λ since a length parameter is
needed in order to match units. The Planck scale can be set to unity for conve-
nience.

This condition R† = R−1 , of course, will restrict the type of terms allowed
inside the exponential defining the rotor R in eq-(2.5) because the reversal of
a p-vector obeys

(γµ1∧γµ2 .....∧γµp)† = γµp∧γµp−1 .....∧γµ2∧γµ1 = (−1)p(p−1)/2γµ1∧γµ2 .....∧γµp

(4.6)
Hence only those terms that change sign ( under the reversal operation ) are
permitted in the exponential defining R = exp[θAEA]. For example, in D = 4,
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in order to satisfy the condition R† = R−1, one must have from the behavior
under the reversal operation expressed in eq-(4.6) that

R = exp [ θµ1µ2γµ1 ∧ γµ2 + θµ1µ2µ3γµ1 ∧ γµ2 ∧ γµ3 ]. (4.7)

such that

R† = exp [ θµ1µ2(γµ1 ∧ γµ2)
† + θµ1µ2µ3(γµ1 ∧ γµ2 ∧ γµ3)

† ] =

exp [ − θµ1µ2γµ1 ∧ γµ2 − θµ1µ2µ3γµ1 ∧ γµ2 ∧ γµ3 ] = R−1. (4.8)

These transformations are the analog of Lorentz transformations in C-spaces
which transform a poly-vector X into another poly-vector X ′ given by X ′ =
RXR−1. The theta parameters θµ1µ2 , θµ1µ2µ3 are the C-space version of the
Lorentz rotations/boosts parameters. The ordinary Lorentz rotation/boosts
involves only the θµ1µ2γµ1 ∧ γµ2 terms, because the Lorentz algebra generator
can be represented as Mµν = [γµ, γν ]. The θµ1µ2µ3γµ1 ∧ γµ2 ∧ γµ3 are the
C-space corrections to the ordinary Lorentz transformations when D = 4.

The C-space invariant proper time associated with a polyparticle motion is
then :

< dX†dX >scalar = dΣ2 = dX0 dX0 + Λ2D−2dxµdxµ + Λ2D−4dxµνdxµν+..
(4.9)

Here we have explicitly introduced the Planck scale Λ since a length parame-
ter is needed in order to tie objects of different dimensionality together: 0-loops,
1-loops,..., p-loops. Einstein introduced the speed of light as a universal absolute
invariant in order to “unite” space with time (to match units) in the Minkowski
space interval: ds2 = c2dt2 − dxidxi, a similar unification is needed here to
“unite” objects of different dimensions, such as xµ, xµν , etc... The Planck scale
then emerges as another universal invariant in constructing an extended scale
relativity theory in C-spaces [43].

The author [44] has shown why the derivatives of the area-bivector coordi-
nates (dxµν/ds) with respect to the ordinary spacetime proper time parameter
s = cτ 6= ct (where s 6= Σ) can be identified with the spin Sµν (per unit mass)
and such that the poly-geodesic equation of a poly-particle leads to the terms
of the Papapetrou equation coupling the curvature Riemann tensor to the spin
Rρ

µ1µ2µ3
Sµ1µ2 (dxµ3/ds). The introduction of generalized gravity in curved

C-spaces involves area, volume, hypervolume metrics and leads to a higher
derivative Gravity with Torsion. Area metrics were first introduced by Cartan
long ago. A thorough discussion of superluminal behavior in ordinary spacetime
while not being superluminal in C-space can be found in [42] and why there is
no Einstein-Podolski-Rosen paradox in Clifford spaces can be seen in [49]. The
analog of photons in C-space are tensionless branes. See [42] for further de-
tails about the Extended Relativity Theory in curved Clifford spaces and Grand
Unification [50], [51]. References about Clifford algebras can be found in [48].
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A Unified Theory of all p-Branes in C-Spaces can be constructed as fol-
lows. The generalization to C-spaces of string and p-brane actions as embed-
dings of world-manifolds onto target spacetime backgrounds involves the embed-
dings of polyvector-valued world-manifolds (of dimensions 2d) onto polyvector-
valued target spaces (of dimensions 2D), given by the Clifford-valued maps
X = X(Σ) (see [45]). These are maps from the Clifford-valued world-manifold,
parametrized by the polyvector-valued variables Σ, onto the Clifford-valued tar-
get space parametrized by the polyvector-valued coordinates X. Physically one
envisions these maps as taking an n-dimensional simplicial cell (n-loop) of the
world-manifold onto an m-dimensional simplicial cell (m-loop) of the target C-
space manifold ; i.e. maps from n-dim objects onto m-dim objects generalizing
the old maps of taking points onto points. One is basically dealing with a
dimension-category of objects. The size of the simplicial cells (p-loops), upon
quantization of a generalized harmonic oscillator, for example, are given by mul-
tiples of the Planck scale, in area, volume, hypervolume units or Clifford-bits.

In compact multi-index notation X = XMΓM one denotes for each one of
the components of the target space polyvector X:

XM ≡ Xµ1µ2....µr , µ1 < µ2 < ... < µr (4.10)

and for the world-manifold polyvector Σ = ΣAEA:

ΣA ≡ ξa1a2....as , a1 < a2 < ....... < as. (4.11)

where ΓM = (1, γµ, γµν , ...) and EA = (1, ea, eab, ...) form the basis of the target
manifold and world manifold Clifford algebra, respectively. It is very important
to order the indices within each multi-index M and A as shown above. The
above Clifford-valued coordinates XM ,ΣA correspond to antisymmetric tensors
of ranks r, s in the target spacetime background and in the world-manifold,
respectively.

There are many different ways to construct C-space brane actions which are
on-shell equivalent to the analogs of the Dirac-Nambu-Goto action for extended
objects and that are given by the world-volume spanned by the branes in their
motion through the target spacetime background.

One of these actions is the Polyakov-Howe-Tucker action

I =
T

2

∫
[DΣ]

√
|H|

[
HAB (∂A XM ) (∂B XN ) GMN + (2− 2d)

]
.

(4.12)
with the 2d-dim world-manifold measure:

[DΣ] = (dξ) (dξa) (dξa1a2) (dξa1a2a3)..... (4.13)

Upon the algebraic elimination of the auxiliary world-manifold metric HAB from
the action (4.12), via the equations of motion, yields for its on-shell solution the
pullback of the target C-space metric onto the C-space world-manifold

HAB(on− shell) = GAB = ∂A XM ∂B XN GMN . (4.14)
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upon inserting back the on-shell solutions (4.14) into (4.12) gives the Dirac-
Nambu-Goto action for the C-space branes directly in terms of the C-space
determinant, or measure, of the induced C-space world-manifold metric GAB ,
as a result of the embedding

I = T

∫
[DΣ]

√
Det (∂A XM ∂B XN GMN ). (4.15)

However in C-space, the Polyakov-Howe-Tucker action admits an even further
generalization that is comprised of two terms S1 + S2. The first term is [45]

S1 =
∫

[DΣ] |E| EA EB(∂A XM ) (∂B XN ) ΓM ΓN . (4.16)

Notice that this is a generalized action which is written in terms of the C-
space coordinates XM (Σ) and the C-space analog of the target-spacetime viel-
bein/frame one-forms em = em

µdxµ given by the ΓM variables. The auxiliary
world-manifold vielbein variables ea, are given now by the Clifford-valued frame
EA variables.

In the conventional Polyakov-Howe-Tucker action, the auxiliary world-manifold
metric hab associated with the standard p-brane actions is given by the usual
scalar product of the frame vectors ea.eb = ea

µeb
νgµν = hab. Hence, the C-

space world-manifold metric HAB appearing in (4.12) is given by scalar product
< (EA)† EB >0 = HAB , where (EA)† denotes the reversal operation of EA

which requires reversing the orderering of the vectors present in the Clifford
aggregate EA.

Notice, however, that the form of the action (4.16) is far more general than
the action in (4.12). In particular, the S1 itself can be decomposed futher into
two additional pieces by rewriting the Clifford product of two basis elements
into a symmetric plus an antisymmetric piece, respectively

EA EB =
1
2
{ EA, EB } +

1
2

[ EA, EB ]. (4.17)

ΓM ΓN =
1
2
{ ΓM , ΓN } +

1
2

[ΓM , ΓN ]. (4.18)

In this fashion, the S1 component has two kinds of terms. The first term
containing the symmetric combination is just the analog of the standard non-
linear sigma model action, and the second term is a Wess-Zumino-like term,
containing the antisymmetric combination . To extract the non-linear sigma
model part of the generalized action above, we may simply take the scalar
product of the vielbein-variables as follows

(S1)sigma =
T

2

∫
[DΣ] |E| < (EA∂A XM ΓM )† (EB ∂B XN ΓN ) >0 . (4.19)

where once again we have made use of the reversal operation (the analog of the
hermitian adjoint) before contracting multi-indices. In this fashion we recover
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again the Clifford-scalar valued action given by [45]. Actions like the ones
presented here in terms of derivatives with respect to quantities with multi-
indices can be mapped to actions involving higher derivatives, in the same
fashion that the C-space scalar curvature, the analog of the Einstein-Hilbert
action, could be recast as a higher derivative gravity with torsion [42].

The S2 (scalar) component of the C-space brane action is the usual cosmo-
logical constant term given by the C-space determinant |E| = det(HAB) based
on the scalar part of the geometric product < (EA)†EB >0= HAB

S2 =
T

2

∫
[DΣ] |E| (2− 2d) (4.20)

where the C-space determinant |E| =
√
|det(HAB)| of the 2d × 2d generalized

world-manifold metric HAB is given by

det(HAB) =
1

(2d)!
εA1A2....A2d

εB1B2....B2d
HA1B1 HA2B2 .... HA2dB2d . (4.21)

The εA1A2....A2d
is the totally antisymmetric tensor density in C-space.

Lie algebra-valued differential form in C-space is

A = AM dXM = (Ai
MTi) dXM . (4.25)

where Ti are the Lie algebra generators of the group with structure constants
[Ti, Tj ] = c k

ij Tk. E8 Yang-Mills theories based on Clifford-algebra-valued poly-
vector gauge theories have been studied by [41]. When the gauge group is the
diffeomorphisms of an internal p+1 dim space, on has for Clifford-algebra valued
field strength

Fa
MN = ∂M Aa

N − ∂N Aa
M + [ AM , AN ]a. (4.26a)

where the poly-vector derivatives are

∂M = ∂X0 , ∂xµ , ∂xµν , ∂xµνρ , ....... (4.26b)

For instance, there is a very particular component that is relevant to the
physics of p-branes

Fa
M0 = Fa

µ1µ2......µm 0 = ∂M Aa
0 − ∂0 Aa

M + [ AM , A0 ]a. (4.27)

where X0 is the scalar component ”direction” of the Clifford-polyvector. De-
spite that Fa

µ1µ2......µm 0 (X; ya) in C-space has the same index structure as an
antisymmetric Fµ1µ2......µm

(x; ya) tensor in ordinary spacetime, there is a fun-
damental difference because the former has a dependence on the X Clifford
poly-vector coordinates rather than on the ordinary spacetime xµ coordinates.
In the quenched approximation one freezes the dependence on the poly-vector
degrees of freedom and truncates them by restricting the C-space field strength

38



to depend solely on the coordinates ya of the internal space. Therefore, one can
perform the following map in the quenched case

[ Aµ1µ2......µm , A0 ]a ∂a ⇔ Fµ1µ2......µm = { Aµ1 , Aµ2 , ......... ,Aµm }. (4.28)

when the range of values of a = 1, 2, 3, ......, n = p + 1 coincides with the rank
m of the field strength, n = m. The NPB are taken w.r.t the p + 1 coordinates
σ0, σ1, ....., σp of the p-brane.

There is yet another way to find a different correspondence than eq-(4.28)
such that

[ AM , AN ]a ∂a ⇔ { Xµ1µ2 ........µm
, Xµ1µ2 ........µn

} =

ωi1i2
∂Xµ1µ2 ........µm

∂σi1

∂Xµ1µ2 ........µn

∂σi2
; i1, i2 ⊂ I = 1, 2, 3, ......, p + 1. (4.29)

There are (p + 1)p/2 different combinations of indices in the evaluation of the
bracket in (4.29). Using the generalized brackets defined in eq-(4.29) one has
the interesting cases

[ AM , A0 ]a ∂a ⇔ { Xµ1µ2 ........µm
, X0 } =

ωi1i2
∂Xµ1µ2 ........µm

∂σi1

∂X0

∂σi2
. (4.30a)

[ AM , Aµ ]a ∂a ⇔ { Xµ1µ2 ........µm
, Xµ } =

ωi1i2
∂Xµ1µ2 ........µm

∂σi1

∂Xµ

∂σi2
. (4.30b)

[ Aµ, A0 ]a ∂a ⇔ { Xµ, X0 } =

ωi1i2
∂Xµ

∂σi1

∂X0

∂σi2
. (4.30c)

And, in general, the generalized n-ary brackets among poly-vector valued coor-
dinates are

{ XM1 , XM2 , ........., XMn } = ωi1i2........in
∂XM1

∂σi1

∂XM2

∂σi2
......

∂XMn

∂σin
. (4.31)

with i1, i2, ....., in ⊂ I = 1, 2, 3, ......p + 1 such that n ≤ p + 1. Therefore the
brackets terms in eq-(4.31) consist of a hierarchy of brackets of the form

{ XM1 , XM2 }, { XM1 , XM2 , XM3 }, ........ , { XM1 , XM2 , ........., XMp+1 }.
(4.32)

The poly-vectors XM1 , XM2 , ......, XMp+1 belong to the 2D components of the
Clifford poly-vector-valued coordinates X associated to the target 2D-dim C-
space, and involve stringy-like, membrane-like, .... , and actual p-brane terms
(involving actual Nambu-Poisson brackets for the last term only) in on stroke.
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Armed with the generalized brackets (4.31), the analog of the Eguchi-Schild
p-brane action is now

S =
∫

dp+1σ [ { XM1 , XM2 }2 + { XM1 , XM2 , XM3 }2 +

......... + { XM1 , XM2 , ........., XMp+1 }2 ]. (4.33)

Notice that the action in eq-(4.33) contains the sum of stringy-like, membrane-
like, .... , and actual p-brane terms (the last term of (4.33)).

One can extend the construction of this work to the most general case of
Lie derivatives along poly-vectors and related to the diffeomorphisms of the
2p+1-dim Clifford space associated with the p + 1-dim internal space. Instead
of having generators of the form Aa

M ∂a; a = 1, 2, ..., p+1, one has now AA
M ∂A

with A spanning A = 1, 2, ......., 2p+1 corresponding to the 2p+1 dimensions of
the C-space associated with the internal p + 1-dim space. In this case, one has
now a hierarchy of brackets of the form

{ XM1 , XM2 , ........., XMn } = ΩA1A2........An
∂XM1

∂σA1

∂XM2

∂σA2
......

∂XMn

∂σAn
.

(4.34)
with poly-vector valued indices A1, A2, ....., An ⊂ A = 1, 2, 3, ......, 2p+1, and n ≤
2p+1 ≤ 2D. The poly-vector-valued coordinates XM1 , XM2 , ......, XM2p+1 of the
target 2D-dim C-space are now functions of the poly-vector-valued coordinates
σA = σ, σi, σi1i2 , σi1i2i3 , ...... associated to the 2p+1-dim C-space corresponding
to the p + 1-dim internal space. Hence, to sum up, XM (σA) represent maps of
the 2p+1-dim world manifold of the C-brane onto the target 2D-dim C-space.

The analog of the Eguchi-Schild p-brane action has a similar form as eq-
(4.33) with the main difference that the domain of integration is the 2p+1 di-
mensional measure of the C-brane, the brackets are given by eq-(4.34), where the
last term is now given by { XM1 , XM2 , ......, XM2p+1}2 involving Nambu-Poisson
brackets and corresponds to an actual C-space brane (2p+1-dimensional) em-
bedded in a target 2D-spacetime. This last term, by itself, contains the sum of
C2D

2p+1 terms, the latter being the binomial coefficient (2D)!/(2p+1)! (2D−2p+1)!.
The author [52] has proposed a geometrical approach to strings and branes

based on the Clifford Geometry of the configuration spaces of strings and branes.
Gauge fields are encoded in the metric of Clifford space without to recur to
the Kaluza-Klein program. It turns out that amongst the latter gauge fields
there also exist higher grade, antisymmetric fields of the Kalb-Ramond type,
and their non-Abelian generalization. All those fields are naturally coupled to
the generalized branes, whose dynamics is given by a generalized Howe-Tucker
action in curved C-space given by eq-(4.12). Having these results by [52] one
can generalize the construction of [29] in section 2.1, starting with the Clifford
space extension of eq-(2.1) and ending with the Clifford space version of the
decomposition of the scalar curvature in eq-(2.3). In this way one would be
able to generate the required antisymmetric nonabelian tensorial gauge field
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strengths to build the action (2.40) (leading to p-brane actions) directly from a
Clifford-space gravitational action.

To conclude, the physical content of the action (4.33) involving a hierarchy
of generalized brackets (4.34), is richer than the Eguchi-Schild p-brane action,
since the latter action is contained in the former. The same applies to the C-
space branes. The impending project is to derive a hierarchy of p-brane actions
directly from a C-space gravitational theory following a similar decomposition
as eqs-(2.1,2.3).
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