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Abstract

In a primary manner it is shown that if a body is stationary the torque
exerted on it is zero, while at present avoiding the analytical proof of this
theorem, this theorem is presented to the student unprovenly and almost
as an axiom.

1 Introduction

We know that in the analytical mechanics, defining the torque as r × F,
it is easily proven that when the angular momentum of a rigid body does
not change with time, inevitably the torque exerted on it is zero. When
teaching the subject of torque to a novice student, since he or she is not at
that level that the analytical proof of the above theorem can be presented
to him or her, after giving a definition like the above one for the torque,
it is by no means proven that the torque exerted on a stationary body
is zero, but it is stated that it must be so. In simpler words supposing
that the bar AB shown in Fig. 1, which is hinged at A, is stationary, the
relation F1 · AB = F2 · AC is not proven as a theorem, but is presented
as an obligatory axiom to the student.

Acceptance of this unproven obligation is difficult for a curious and
perspicacious student, and he or she asks himself or herself whether a new
law in mechanics is being revealed, a law stating that the torque exerted
on a stationary body must be zero.

Therefore, the necessity of proving the above theorem in a simple
manner understandable for a novice student displays itself. In the next
section we proceed to such a proof.
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2 The proof

Suppose that while the string of Fig. 2 is tied to a fixed support in A
and B, the force F is exerted on it in the point O due to which the
string exerts the forces F1 and F2 on the support. The string is in
equilibrium, then the support exerts forces equal to F1 and F2, in the
directions shown in Fig. 2, on the string in A and B. Each of these
two forces, exerted by the support, has two components having direc-
tions as shown in the figure with the magnitudes of F ′

1 = F1 ·OO′/OA,
F ′′

1 = F1 ·AO′/OA, F ′
2 = F2 ·OO′/OB and F ′′

2 = F2 ·BO′/OB. Since
the string has no horizontal (leftward or rightward) translational motion,
we have F ′′

1 = F ′′
2 or F1 ·AO′/OA = F2 ·BO′/OB which we write it as

(F1 ·OO′/OA) ·AO′ = (F2 ·OO′/OB) ·BO′ or F ′
1 ·AO′ = F ′

2 ·BO′. No-
tice that we have reached the definition of torque, because F ′

2 = F2 ·OO′/OB
is the normal force exerted on B and BO′ is the torque arm relative to
O′, and also F ′

1 = F1 ·OO′/OA is the normal force exerted on A and AO′

is the torque arm relative to O′, which as we saw the product of the first
two was equal to the product of the second two (that was in fact because
of absence of any rotational motion).

Now imagine that the angles θ1 and θ2 in Fig. 2 approach zero. In
this state since F1 and F2 must have normal components for balancing the
constant force F , inevitably their horizontal components (balancing each
other) approach infinity. It is quite obvious that no substance can stand
infinite force and then in practice θ1 and θ2 will not be zero although
can be very small. But notice that even if we suppose that θ1 = θ2 = 0,
the above-mentioned law for torque will be still true, ie we shall have
F ′

1 ·OA = F ′
2 ·OB for the case shown in Fig. 3, because obviously this is

a limit state for a process in each stage of which the above law of torque
has been true.

The above material is true for every rigid body (eg a rigid rod each
end of which is borne by a person and a weight is hung from a point of it
between these two ends). In this manner the law of torque has been proven
generally. Considering Fig. 3 and this fact that we saw F ′

1 ·OA = F ′
2 ·OB,

we can write: F ′
2 ·OB = F ′

1 ·OA ⇒ F ′
2 ·OB +F ′

2 ·OA = F ′
1 ·OA+F ′

2 ·OA
or (F ′

2 · (OB + OA) = F ′
2 · AB) = ((F ′

1 + F ′
2) · OA = F · OA) and also

F ′
2·OB = F ′

1·OA ⇒ F ′
2·OB+F ′

1·OB = F ′
1·OA+F ′

1·OB or ((F ′
1+F ′

2)·OB =
F ·OB) = (F ′

1 · (OA + OB) = F ′
1 ·AB)

In an almost similar manner it can be proven that the torque of F
relative to each point in space is absolutely equal to the sum of the torques
of F ′

1 and F ′
2 relative to that point. For example for the point C in Fig. 3

we have: F · OB = F ′
1 · AB ⇒ F · OB + F · BC = F ′

1 · AB + F · BC or
F ·(OB+BC) = F ′

1·AB+(F ′
1+F ′

2)·BC or F ·OC = F ′
1·(AB+BC)+F ′

2·BC
or F ·OC = F ′

1 ·AC + F ′
2 ·BC
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