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Abstract

It is shown that contrary to what is thought the classical physics does
not predict a uniform distribution for the magnetic dipoles (silver atoms)
in a nonuniform magnetic field in the Stern-Gerlach experiment. Its pre-
diction for a concentrated beam is obtained in the form of a circular surface
such that the density of the dipoles is much more near the edge than near
the center. Some experiments are proposed for testing the contents of the
article.

1 Introduction

In the Stern-Gerlach experiment, after collimating a beam of silver atoms
stimulated in a heated furnace it is passed through a slit and then through
a strong nonuniform magnetic field. It then hits on a sensitive plate. What
is observed on the plate is not a uniform distribution of effects of the silver
atoms but is a nonuniform one showing two maximums in intensity: one
towards the region of intense field and the other towards the region of
weak field.

The world of physics has interpreted this fact as an experimental evi-
dence to prove the quantization of the magnetic dipoles (ie silver atoms) in
a magnetic field into only two upward and downward directions invoking
that the classical physics predicts a uniform distribution for the magnetic
dipoles randomly oriented in such a field.

Since wherever analyzing this experiment this is also pointed that the
classical physics predicts a uniform distribution, without presenting any
reason that how in the framework of this physics such a distribution is
predicted, this article intends to investigate actual prediction of the classi-
cal physics for the distribution of the magnetic dipoles randomly oriented
in such the above mentioned field.
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2 Mathematical analysis of the problem

In order to have a mathematical analysis we benefit from the similarity
between the electrostatics and magnetostatics. Nonuniform magnetostatic
field produced in the Stern-Gerlach experiment is such as if almost all the
magnetic lines of force are spread around (in fact onto the flat pole) from
the sharp edge of a magnet (ie the other pole). Points near this edge, in
which density of the lines is much, form the region of intense field, while
points far from this edge (and near to the flat pole), in which density of
the lines is slight, form the region of weak field.

Electrical analog of this situation with a proper approximation is the
electrostatic field arising from a charged straight infinite line in which
the electric lines of force radially and normal to the charged line have
originated from it and have spread throughout the space. Likewise, the
electrical analog of the magnetic dipoles are electric dipoles. Then, let’s
obtain form of the distribution of a great number of equivalent electric
dipoles gathered in a point in such an electrostatic field and oriented
randomly. Assume that these are point electric dipoles.

To each dipole, a vector of electric dipole moment, p , is attributed.
We call the electrostatic field arising from the charged line as E . We
know from the electrostatics [eg see the problems of the second chapter
of Foundations of Electromagnetic Theory by J. R. Reitz, F. J. Milford,
R. W. Christy, Addison-Wesley, 1979] that the net force exerted on the
dipole p positioned in the field E is obtained from the formula (p · ∇)E,
and the field arising from a charged line is E = (λ/(2πε0))ρ̂/ρ in which λ
is the linear charge density of the charged line and ρ is the radial distance
from the line. Having these two recent expressions and using Cartesian
coordinates and assuming that the z-axis is the same charged line, we have
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where F is the net force exerted on the dipole p.

Suppose that the point in which the dipoles have gathered has the
Cartesian coordinates (x,0,0). In this case the above expression obtained
for F takes the simple form of

F =
λ

2πε0x2
(−îpx + ĵpy). (1)
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This relation shows that all the vectors of the forces exerted on the dipoles
are in the xy-plane even though the vector p is not in this plane. (Even
without any further reasoning it is clear that therefore the dipoles will get
away from the point (x,0,0) in the xy-plane and we must expect forming
a kind of hole at this point.)

How have the vectors of dipole moment, related to the dipoles gathered
in the point (x,0,0), been distributed? Since there is no preferred direction,
we can divide the surface of a sphere, which its center is the point (x,0,0)
and its radius is |p|, into much small equivalent symmetric areas, and
imagine that for each of these partial areas there is only one p on the
point (x,0,0) aiming at it. We want to obtain the distribution of the
forces exerted on these dipoles in the above mentioned field.

Since, according to the relation (1), this force is proportional only to
the projection of the vector p on the xy-plane, we need only to project
each of these vectors, p, (which, as we said, has aimed at one of the
partial symmetric areas of the surface of the sphere) on the xy-plane. The
magnitude of this projection, according to the relation (1), is proportional
to the force exerted on the dipole, and its direction, assuming that λ > 0,
is the same direction as the image of the projection of p (on the xy-plane)
in a mirror plane perpendicular to the x-axis in the point (x,0,0).

Therefore, for obtaining the design of the distribution of the forces ex-
erted on the dipoles, it is sufficient to project each of the p-vectors (which
as we said, have been distributed symmetrically in a sphere centered in
(x,0,0) ) on the xy-plane. Let’s, instead of this act, take a more analytic
action. In this action we consider the points of the surface of the sphere
at each of which one of the p-vectors has aimed, and project these points
on the xy-plane, and finally obtain the surface density of these projections
on this plane.

Consider a strip from the surface of a hemisphere projected on its
base. Considering R as the hemisphere radius and θ as the angle of the
position of this strip relative to the axis of the hemisphere, area of this
strip is 2π(R2) sin θdθ and area of its projection is 2πrdr in which r is the
radius of this projection. Assuming that the surface density of the above
mentioned points on the surface of the hemisphere (at each of which one
of the p-vectors has aimed) is sigma, the number of these points on the
strip is 2πR2 sin θdθ ·σ.Since just this same number of points are projected
on the projection of this strip on the base, the density of the projections
of these points on the base, which we call it as σ′, at distance r from the
center, will be 2πR2 sin θdθ · σ/(2πrdr). With some simple mathematical
operations, it can be seen that we have

σ′ =
R√

R2 − r2
σ (2)

for the density of the projection of the points on the base, at distance r
from the center.
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If instead of the hemisphere we consider the whole sphere, it will be
sufficient to multiply the expression (2) by 2 for obtaining the density of
the projections of the points. Important for us is that we understood that
this density is proportional to

1√
R2 − r2

.

Now giving different values (from zero to R) to the r, we can easily
obtain the design of the distribution of the density. A schematic design
of such a distribution has been shown in Figure 1.

In this manner we showed that, assuming that the beginnings of the
vectors of forces exerted on the dipoles gathered in the point (x,0,0) are
all the same point (x,0,0), the ends of these vectors are in the xy-plane
and have a distribution like Figure 1 (assuming that the center of this
figure is the same point (x,0,0) ). It is obvious that each dipole, due to
the force exerted on it, starts moving. Assuming that during the exertion
of the field on the dipoles they do not rotate due to the torques exerted
on them, if the distance (x) between the point (x,0,0) and the yz-plain is
sufficiently large and we don’t allow that the dipoles get so much distance
from one another due to the net forces exerted on them, we can suppose
with a good approximation that during the displacement of the dipoles
under the influence of the forces exerted on them, the force exerted on
each dipole remains constant. Therefore, the displacement of the dipole
is obtained from the famous relation d = (1/2)Ft2/m in which d is the
magnitude of the displacement, and t is the time of exertion of the force,
and F is the magnitude of the force exerted on the dipole (ie the magnitude
of the expression (1) ), and m is the mass of the dipole. What is important
for us is that, as we see, in a definite time the displacement of the dipole is
proportional to the force exerted on it. Since, on supposition, each dipole
has the same mass, the design shown in Figure 1 is also the same design
of the displacements of the dipoles due to the forces exerted on them, of
course assuming that they don’t rotate due to the exertion of the torques
on them during the exertion of the field.

If the dipoles are under the influence of the field for a sufficiently long
time, they will practically find an opportunity to rotate due to the torques
exerted on them. It is clear that this rotation will be in such a manner
that the dipoles take such orientations that finally only forces towards
the region of intense field are exerted on them (and we have no longer a
distribution of forces in every direction as in Figure 1). In this state the
design of the distribution will be no longer similar to Figure 1.

But if the dipoles are under the influence of the field only for a very
short time (ie only in a very short time the field is exerted on them), the
dipoles, oriented randomly, won’t find any opportunity to rotate due to
the torque exerted on them during the time of exertion of the field. Thus,
during this time, the orientations of the dipoles and thereby the net forces
exerted on them won’t change, and then immediately after switching the
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field off, we shall have a distribution like Figure 1 for the dipoles but the
area of the distribution will be practically very small, because the time
of exertion of the field and consequently of the net force exerted on each
dipole is very short and consequently its displacement due to this force
will be also very small.

But what will be the design of the displacements of the dipoles if after
switching the field off we let the dipoles continue, for a definite time, their
motion with the speed obtained by them during the same short time of
exertion of the field? Such a design of distribution will be exactly the
same design shown in Figure 1. To prove this, it is sufficient to prove that
if two equal masses m1 and m2 in Figure 2 coincide with each other in the
time t=0 and in the time t = t1 the mass m1 gets the distance d1 from the
origin due to the exertion of the constant force F1 on it and the mass m2

gets the distance d2 from the origin in the same direction as m1 due to the
exertion of the constant force F2 on it and just at this time exertion of the
forces is switched off, then the ratio of the distance of the mass m1 from
the origin to the distance of the mass m2 from the origin will be always
equal to d1/d2 at every time after switching the forces off (after which the
masses continue their motion in the same direction with speeds obtained
by them during the exertion of the forces). This is a simple mechanical
problem solving of which can be done by the reader easily.

In summary, we showed that if the dipoles concentrated in the point
(x,0,0) which are oriented randomly are taken under the influence of the
field of a charged line for a very short time, they will be distributed only in
the plane perpendicular to the charged line at (x,0,0) in a manner showing
maximum and minimum in intensity as shown in Figure 1 (not a uniform
intensity). As the time elapses (exerting no field), only the area of the
distribution increases but its form won’t alter.

3 Experimental ways for testing the the-
ory

It is obvious that if the random dipoles concentrated in (x,0,0) have a
great speed parallel with the z-axis (eg because of the exit from a hot
furnace) such that the time of their passing through the fixed field (of the
charged line with a limited length) or in other words such that the time
during which the field is exerted on them is very short and afterwards
they descend on a sensitive plate perpendicular to the z-axis at a point
of the trajectory sufficiently far from the field region, then according to
what we have said so far we must expect that they will show a design of
the density distribution on the sensitive plate similar to Figure 1. Notice
that we have assumed that the beam is concentrated as far as possible,
ie the ratio of its thickness to its distance from the z-axis is very, very
small. In fact it is better to consider the beam consisting of very much
small spherical volumes occupying the whole volume of the beam practi-
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cally. In this state the random dipoles of each spherical volume will have
a distribution like Figure 1 after passing through the field and descending
on the sensitive plate, and since all of these spherical volumes are concen-
trated very near around the beam axis, the distribution related to all of
the spherical volumes after their passing through the field is also similar
to Figure 1. The only condition is that the width of the distribution is
sufficiently larger than the thickness of the beam.

Now, how will the distribution be after passing through the field if
instead of the above concentrated beam we have a nonconcentrated one
arising from passing of the dipoles through a slit with a non-negligible
length? Although analytical obtaining of the distribution in this case
won’t be certainly as straightforward as one we discussed here (ie one
related to a concentrated beam), it is intuitively clear that the distribution
will be outwards from an imaginary line drawn parallel to the slit and equal
to its length (ie we shall have two maximums in intensity: one above and
the other under this line) and will have an extension parallel to the slit,
and it is expected that the length of this extension will be more than the
slit length.

Anyway, it is quite clear from the analysis presented here that this
claim that the classical physics predicts a uniform distribution not a dis-
tribution having maximum and minimum in intensity is quite wrong.

By performing an experiment the assertions of this article will be com-
pletely either confirmed or rejected. Instead of passing the silver atoms
through a slit, pass them through a very small circular aperture and af-
terwards through the magnetic field. If the form of the distribution will
have only two upward and downward maximums, the contents of this ar-
ticle will be certainly wrong and the result of the experiment can be cited
as an experimental evidence for quantization of the magnetic spin in a
magnetic field into only two cases of 1/2 and -1/2, but if the distribution
will be similar to Figure 1, the contents of this article will be decisively
confirmed.

Another experimental test is investigating that whether the length of
the distribution on the sensitive plate is larger than the slit length or not.
For this test the beam must be so collimated beforehand that if there was
no magnetic field, the length of the distribution would be equal to the
same slit length.

Certainly if the magnetic dipoles have only two (quantized) upward
and downward directions in the magnetic field, there won’t be any reason
that any forces parallel to the slit length are exerted on them causing
lengthening of the distribution compared with the length of the slit. No-
tice that as we saw previously, the forces exerted on the dipoles in the
magnetic field are oriented in every direction not in only two directions.
(The photographs I have seen in this respect show that for a beam passing
through a slit the effect on the sensitive plate has a rather single length-
ened elliptical shape (instead of having two separate lines which is more
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expected as a quantum prediction) (eg see Halliday)).

As we mentioned previously, we expect that with a long-time passing
of the beam through the field (eg by lengthening the field) the intensity
of the beam in the region of weak field is decreased (because the dipoles
find opportunity to rotate gradually due to the torques exerted on them
and consequently one by one will be drawn towards the region of intense
field). This matter can be another experimental test for the theory.

It is obvious that when each of the separated beams (one towards the
region of intense field and the other towards the region of weak field)
without elapsing of much time are passed again through a similar field,
because of lack of enough time for rotation of the dipoles and serious
change of their orientations, we expect, as the experiment shows, that the
separated beam show the same behavior in the new field as in the old one,
ie the beam turned towards the intense field will now again turn towards
the intense field and the other one turned towards the weak field will now
again turn towards the weak field. But if we let the separated beams
continue their motion in a region lacking any field for a sufficiently long
time after their passing through the field, then the dipoles, due to the
angular speeds they have gained during the exertion of torque on them
in the field, will continue their gradual rotation till their orientations will
change completely. In this state we expect that if each of the separated
beams is directed into a similar field, it won’t turn only towards the same
direction of deflection undergone in the first field, but we expect that, if
not deflected towards the opposite direction, it separates again into two
beams (towards the regions of intense and weak fields) at least. This
matter can also be another experimental test for the theory.
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