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Abstract

It is shown that there exists a uniqueness theorem, stating that the
charges given to a constant configuration of conductors take a unique dis-
tribution, which contrary to what is believed does not have any relation to
the uniqueness theorem of electrostatic potential. Using this theorem we
obtain coefficients of potential analytically. We show that a simple care-
lessness has caused the famous formula for the electrostatic potential to be
written as U = 1/2

∫
D ·Edv while its correct form is U = 1/2

∫
D ·Eρdv

in which Eρ is the electrostatic field arising only from the external charges
not also from the polarization charges.

Considering the above-mentioned material it is shown that, contrary
to the current belief, capacitance of a capacitor does not at all depend
on the dielectric used in it and depends only on the configuration of its
conductors. We proceed to correct some current mistakes resulted from
the above-mentioned mistakes, eg electrostatic potential energy of and the
inward force exerted on a dielectric block entering into a parallel-plate
capacitor are obtained and compared with the wrong current ones.

It is shown that existence of dielectric in the capacitor of a circuit
causes attraction of more charges onto the capacitor because of the polar-
ization of the dielectric. Then, in electric circuits we should consider the
capacitor’s dielectric as a source of potential not think wrongly that exis-
tence of dielectric changes the capacitor’s capacitance. Difference between
these two understandings are verified completely during some examples,
and some experiments are proposed for testing the theory. For example
it is shown that contrary to what the current theory predicts, resonance
frequency of a circuit of RLC will increase by inserting dielectric into the
capacitor (without any change of the geometry of its conductors). It is
also shown that what is calculated as K (dielectric constant) is in fact
2− (1/K).
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1 Introduction

In the current electrostatic discussions it is stated that a solution of
Laplace’s equation which fits a set of boundary conditions is unique, and
while this matter has not been proven in the case that these boundary
conditions are the charges on the boundaries, the known charges on the
boundaries are taken as boundary conditions. In the first section of this
paper this problem is solved and then the coefficients of potential are
obtained. In the current electromagnetic textbooks these coefficients are
obtained through the above-mentioned unproven generalization of bound-
ary conditions. Incorrectness of this way is also shown.

The relation U = 1/2
∫

V
D ·Edv as the electrostatic potential energy

of a system is an equation quite familiar to every physicist, but a careful
scrutiny indicates an undoubted mistake existent in it. This mistake is
simply arising from this fact that in the process of obtaining this equation,
while accepting ∇·D = ρ where ρ is the external electric charge density, it
is forgotten that in the primary equation of the electrostatic potential en-
ergy of the system the potential arising only from this ρ, φρ, not also from
the polarization charges be taken into account resulting in considering E
(obtained from −∇φ) instead of Eρ (obtained from −∇φρ) which is the
electrostatic field arising only from ρ not also from the polarization. This
careful scrutiny is presented in the third section of this article. A great
part of this section proceeds to some consequences of this same mistake
including this current belief that the capacitance of a capacitor depends
on its dielectric, while we shall prove that this is not at all the case and
it depends only on the form of the configuration of the conductors of the
capacitor.

To another much simple and obvious current mistake has been paid in
another paper (Two kinds of potential difference for a capacitor): We con-
nect a battery, which the potential difference between its poles is ∆φ, to
the two plates of an uncharged capacitor until it will be charged. Then,
what is the electrostatic potential difference between the plates of the
charged capacitor? All the current literature on the subject answer that
this electrostatic potential difference is the same potential difference be-
tween the poles of the battery, ∆φ, while this is not the case and is equal
to 2∆φ.

As it is seen, the above current mistakes some of which being fun-
damental are totally in bases of the subject of Electromagnetism, and
cannot be ignored, because not only are much widespread and taught in
all the universities but also some of them are basis for some subsequent
deductions in other branches of physics. This matter shows that in the
progress of physics the attention should not be only to its rapidity but also
to its profundity, otherwise, as in the case of this article, sometimes some
of the obvious mistakes remain hidden from the physicists’ view yielding
probably very other wrong consequences.
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2 Another uniqueness theorem in Elec-
trostatics

2.1 Uniqueness theorem of charge distribution in
conductors

In solving electrostatic problems there is a uniqueness theorem that dis-
tinctly states that when the electrostatic potential or the normal compo-
nent of its gradient is given in each point of the bounding surfaces then
if the potential is given in at least one point, the solution of Laplace’s
equation is unique, and otherwise we may add any constant to a solution
of this equation. Unfortunately, sometimes negligence is seen in careful
applying of the quite clear stated above boundary conditions. For instance
without any reason the charges of bounding surfaces are taken as bound-
ary conditions in terms of which the above theorem is applied in obtaining
coefficients of potential of a system of conductors. The reasoning being
used is this (see Foundations of Electromagnetic Theory by Reitz, Milford
and Christy, Addison-Wesley, 1979): “Suppose there are N conductors in
fixed geometry. Let all the conductors be uncharged except conductor
j, which bears the charge Qj0. The appropriate solution to Laplace’s
equation in the space exterior to the conductors will be given the symbol
φj(x, y, z)and the potential of each of the conductors will be indicated by
φj

1, φ
j
2, · · · , φ

j
j , · · · , φ

j
N . Now let us change the charge of the jth conduc-

tor to λQj0. The function λφj(x, y, z) satisfies Laplace’s equation, since
λ is a constant; that the new boundary conditions are satisfied by this
function may be seen from the following argument. The potential at all
points in space is multiplied by λ; thus all derivatives (and in particular
the gradient) of the potential are multiplied by λ. Because σ = ε0En, it
follows that all charge densities are multiplied by λ. Thus the charge of
the jth conductor is λQj0 and all other conductors remain uncharged. A
solution of Laplace’s equation which fits a particular set of boundary con-
ditions is unique; therefore we have found the correct solution, λφj(x, y, z)
to our modified problem. The conclusion we draw from this discussion is
that the potential of each conductor is proportional to the charge Qj of
conductor j, that is φj

i = pijQj , (i = 1, 2, · · · , N) where pij is a constant
which depends only on the geometry. ”

The fault may be found in this reasoning is arising from the same in-
correct distinction of boundary conditions. This fault is that a solution
to Laplace’s equation other than λφj can be found such that it can make
the charge of the jth conductor λfold retaining all other conductors un-
charged. This solution can be λφj(x, y, z) + c for a non-zero constant c.
It is obvious that its gradient and therefore σ = ε0En arising from it com-
pared with before are λ fold and then the charge of the jth conductor will
be λ fold while all other conductors remain uncharged. But this solution
is no longer proportional to the charge of the jth conductor, Qj , ie we
won’t have φj(x, y, z) = pijQj .
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In order to clear obviously that the uniqueness theorem of potential
does not include boundary conditions on charges, suppose that there is an
initially uncharged conductor. We then give it some charge. We want to
see when the given charge is definite whether potential function outside
the conductor will or won’t be determined uniquely by this theorem. We
say that the given charge distributes itself onto the surface of the con-
ductor and remain fixed causing that the potential of the equipotential
surface of the conductor to become specified. With specifying of the con-
ductor potential, potential function outside the conductor is determined
uniquely according to the theorem. But important for us is knowing that
whether form of the charge distribution onto the conductor surface is
uniquely determined or not. One can say that maybe the charge can take
another form of distribution on the surface causing another potential for
the equipotential surface of the conductor and according to the theorem
we shall have another unique function for the potential outside the con-
ductor. In a geometric illustration there is not anything to prevent the
above problem for a sharp conductor being solved with equipotential sur-
faces concentrated near either the sharp end or the other end; the charge
is concentrated at the sharp end in the first and at the other end in the
second case. Which occurs really is a matter that must be determined by
another uniqueness theorem, uniqueness theorem of charge distribution,
which has no relation to the uniqueness theorem of potential.

Analytical proof of this theorem is a problem that must be solved.
That this theorem is valid can be understood by some thinking and vi-
sualizing. Separate from inner parts of the conductors consider external
surfaces of the conductors as some conducting thin shells. Obviously if
some charge is to distribute itself in these shells, the components of the
charge, as a result of the repulsive forces, will take the most distant pos-
sible distances from one another, and even when for instance uncharged
conducting shells are set in the vicinity of charged conducting shells, their
conducting (or valence) charges will be separated in order that like charges
take the most distant and unlike charges take the most neighboring pos-
sible distances from one another. What is clear is that these ”most”s
indicate to some unique situation. Therefore we can say that form of the
surface charge distribution is a function of geometrical form of the con-
ductors and then will be specified uniquely for a definite configuration of
conductors.

2.2 Proportion of charge density to net charge

Now suppose that for a particular configuration of and definite amount of
charge given to some conductors we can find two distributions of charge in
the conductors in each of which the resultant electrostatic force on each
infinitesimal partial charge due to other infinitesimal partial charges is
outward normal to the conductor surface and there exists no tangential
component for this force. (Of course these outward normal forces are
balanced by surface stress in the material of the conductors.) Because
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there is not any tangential component for the mentioned forces, existence
of these two charge distributions is possible. But because of the same
configuration for the both, the uniqueness theorem of charge distribution
necessitates that the both distribution be the same. We shall benefit form
this matter soon.

We prove that in a constant configuration of some conductors from
which only one has net charge, Q, change of this net charge form Q to
λQ causes that the surface density in each point of the conductors’ sur-
faces becomes λ fold: Visualize the constant situation existent before that
Q becomes λQ . The charges in the conductors have a unique distribu-
tion according to the uniqueness theorem of charge distribution. In this
distribution there exists a resultant electrostatic force exerted on each in-
finitesimal partial surface charge σda due to other partial charges which is
outward normal to the conductor surface. Suppose that this distribution
becomes nailed up in some manner, ie each partial charge becomes fixed
in its position and no longer has the state of a conducting free charge
(in order that won’t probably change its position as a result of change
of the charge). Now suppose each partial charge becomes λ fold in its
position, ie we have for the new partial charge σ′da = λσda. Since the
partial charges are nailed up, they are not free to redistribute themselves
on the conductors’ surfaces probably. It is obvious that resultant electro-
static force exerted on a partial charge σ′da will be still outward normal to
the conductor surface, since firstly this partial charge is λfold of previous
σda and secondly each of other partial charges isλ fold of previous partial
charges and then the only change in the resultant force on σda will be
in its magnitude which becomes λ2 fold, while its direction will remain
unchanged. Therefore, by changing each σda to λσda we have found a
nailed up distribution for the charges which exerts a resultant force on
each partial surface charge outward normal to the conductor surface, and
furthermore, the only change in the net charges of the conductors is in
the conductor bearing net charge Q previously which now bears λQ , and
then it is obvious that if the partial charges get free from the nailed state
will retain this distribution. Therefore, this distribution is a possible one,
and according to what said previously based on the uniqueness theorem, is
the same distribution that really occurs on the conductors’ surfaces when
the net charge of the mentioned conductor changes from Q to λQ .

2.3 Generalization of the uniqueness theorem and
of the charge density proportion to net charge

In fact, the uniqueness theorem of charge distribution on the conductors
is true in case of a particular configuration of conductors and a constant
(nailed up) charge distribution and a constant set of linear dielectrics in
the space exterior to the conductors, ie in such a case a charge given to
the conductors causes a unique charge distribution on their surfaces. The
truth of this theorem can be found out with some indications similar to
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previous ones.

Now consider a constant configuration of conductors and a constant
set of linear dielectrics outside the conductors. There is no charge outside
the conductors. We give a net charge to only one of the conductors.
Certainly, according to the above theorem we shall have a unique charge
distribution in the conductors. Suppose that the given charge of that
conductor becomes λfold. We want to prove that the surface free charge
densities on all of the conductors and also the dielectrics’ polarizations
will become λfold consequently.

Visualize the situation existent before that the given charge becomes
λfold. An outward resultant force normal to the conductor surface is
exerted on each partial surface charge σda due to other nonpolarization
and polarization partial charges. Now suppose that all the nonpolariza-
tion (or free) partial charges be nailed up in their positions and then all
the nonpolarization and polarization partial charges (ie the previous free
charges and dielectrics’ polarizations) become λfold. Obviously, in this
case the resultant electrostatic force on each partial surface charge is out-
ward normal to the conductor surface too (and only its magnitude has
become λ2fold). Furthermore, it is obvious that in each point of each di-
electric the electrostatic field has only become λfold (without any change
in its direction) and then we see that this field is proportional to the po-
larization at that point as must be so expectedly. Thus, if the charges
get free from the nailed state, they will remain on their positions, and
furthermore, the only change in net charges is in the above mentioned
conductor, net charge of which has now become λfold. Therefore, this is
a possible distribution and according to the above mentioned uniqueness
theorem of charge distribution is unique and then is the same distribution
that really occurs.

2.4 Superposition principle for the charge densi-
ties

We must also notice another point. We understood that in a configuration
of some conductors that only one of them has net charge, charge distribu-
tion is unique. Suppose that we have N conductors and only conductor i
has net charge (Qi). The unique distribution that charges get, prescribes
charge surface density σi(r) (and polarization Pi(r)) for each point of
each conductor (and each point outside the conductors).

Now consider this same configuration of these conductors from which
only conductor j (such that j is not equal to i) has net charge (Qj). The
unique distribution that charges get, prescribes charge surface density
σj(r) (and polarization Pj(r)) for each point of each conductor (and each
point outside the conductors).

It is clear intuitively that if we have this same configuration of the
conductors from which only two conductors have net charges, the ith
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conductor has the same relevant net charge (Qi) and the jth conductor
has the same relevant net charge (Qj), then the unique distribution that
charges get, prescribes charge surface density σi(r) + σj(r) (and polar-
ization Pi(r) + Pj(r)) for each point of each conductor (and each point
outside the conductors). This fact has generality for when each conductor
has a specified net charge or when there is a fixed distribution of external
charge outside the conductors (ie we can add contribution of this distri-
bution towards forming charge surface density on the conductors (and
forming polarization) to other contributions). We can even, when there
are linear dielectrics, obtain surface charge distribution on the conduc-
tors by adding the charge surface density in each point on the conductors
related to charge distribution in the absence of dielectrics to the charge
surface density in the same point produced only by the polarizations of
the dielectrics assuming that there exists no net charge in any conductor
but only the polarizations exist.

Therefore, considering the theorems we have proven so far, we can
conceive that in a system of some charged conductors and some fixed
external charge distribution and some linear dielectrics if the net charge
of a conductor becomes λfold, free partial charge surface density arising
from that conductor, assuming that other conductors are uncharged and
there are not any dielectrics or other external charges, will become λfold
in each point on the conductors. It is evident that, considering the integral
definition of electrostatic potential and assuming that the potential is zero
at infinity, the partial potential arising from that conductor (ie in fact from
its effect on forming the free charges) will become λfold in each point, too,
and then the partial potential arising from that conductor will become
λfold in each conductor which is an equipotential region for this partial
potential. In other words, the free net charge of one of the conductors is
proportional to the partial potential arising from the (effect of the free net)
charge of that conductor (assuming that there are not any dielectrics or
other external charges and that other conductors are uncharged) in each
of the conductors: (i = 1, 2, 3, · · · , N) φj

i = pijQj . Furthermore, this fact
that each conductor is an equipotential region for this partial potential
proves that pij depends only on the geometry of the configuration of
the conductors and even does not depend on the dielectrics and their
positions (or other external charge distributions outside the conductors),
because, as we mentioned, this constant coefficient of the proportion, pij ,
is related to when we suppose that there are not at all any dielectrics
(or other external charges) and infer that the charge surface densities will
become λfold if the net charge of a conductor (the jth one) becomes λfold
(assuming that other conductors are uncharged).

Now since the potential of each conductor is the sum of its partial
potentials plus a constant, we have φi =

∑N

j=1
pijQj + c. (Adding of c

removes the worry arising from generalization of the necessity of the above
reasoning that the partial potentials must be zero at infinity.)
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3 Static potential energy and current mis-
takes

3.1 Static potential energy

We know that if a closed surface S contains external electric charge Q and
polarization electric charge QP , then we shall have

∮
S
E · n̂da = (Q + QP )/ε0.

In this relation E is the partial electrostatic field arising from both an elec-
tive distribution of external charge, the part of which inside the closed sur-
face being equal to Q, and an elective distribution of polarization charge,
the part of which inside the closed surface being equal to QP . (The word
“elective ” implies that the entire existent charge distribution is not nec-
essarily taken into consideration, and similarly the word“partial ” implies
that maybe only a part of the existent field is intended. Notice the super-
position principle of field and the linearity of potential.)

On the other hand we have QP =
∫

S′ P · n̂da+
∫

V
(−∇·P)dv in which

V is the volume of the dielectric enclosed by S, and S′ is the surface
of the conductors inside the closed surface S. In this relation P · n̂ and
−∇·P are the the polarization charge densities of the elective distribution
of polarization charge, and then we can say that in this relation P is an
elective (ie not necessarily entire) distribution of electrostatic polarization.
If using the divergence theorem we change the volume integral into the
surface integral, we finally shall obtain QP = −

∮
S
P·n̂da. The comparison

of this relation with the first relation of this section shows that
∮

S
(ε0E +

P) · n̂da = Q in which P is an elective distribution of polarization, and
Q is the total charge of that part of the elective distribution of external
charge which is inside the closed surface S, and E is the partial field arising
from both the totality of the elective distribution of external charge and
the totality of the elective distribution of polarization. On definition,
the electric displacement vector is D = ε0E + P. Then

∮
S
D · n̂da =∫

V
ρdv. This relation says that if E is arising from both ρ, which is an

elective distribution of external electric charge, and P, which is an elective
distribution of electrostatic polarization, then the surface integration of
D = ε0E + P on the closed surface S is equal to the totality of only that
part of our elective external charge which is inside the closed surface. If
we use the divergence theorem in the recent relation, we shall conclude
∇ ·D = ρ.

Considering the above discussions the following deduction may be in-
teresting. (In this deduction the expression “the E arising from both ρ
and P ” is shown as“E(ρ, P ) ”.)

D1 = ε0E(ρ, P1) + P1 ⇒ ∇ ·D1 = ρ}⇒ ∇ ·D1 = ∇ ·D2D2 = ε0E(ρ, P2) + P2 ⇒ ∇ ·D2 = ρ

or ∇ · (ε0E(ρ, P1) + P1) = ∇ · (ε0E(ρ, P2) + P2)

The electrostatic potential energy of a bounded system of electric
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charges (which can exist in various forms of external charge, polariza-
tion charge, etc, eg in the form of cancelled charges, from the macroscopic
viewpoint, in a molecule) having the density ρ, which is in fact the spent
energy for assembling all the fractions of the charge differentially from
infinity, is

U =
1

2

∫
Vh

ρ(r)φ(r)dv (1)

in which Vh is the whole space and φ is the partial electrostatic potential
due to the distribution of ρ. The way of obtaining the relation (1) can be
seen in many of the electromagnetic texts.

As it is so actually in the tridimensional world of matter, we disburden
ourselves from the dualizing the charge density as the surface and volume
ones and say we have only the volume density of the electrostatic charge
that, for instance, can have an excessive absolute amount on the surface of
a charged electric conductor. Now we take into consideration an elective
distribution of the volume density of the external (ie nonpolarization)
electric charge, ρ. We want to obtain the electrostatic potential energy
of this distribution. We know that ∇ · D = ρ so that D = ε0E + P
in which P is the elective distribution of the electrostatic polarization
and E is the resultant field arising from both the elective distribution
of the external electric charge density (ρ) and the polarization charge
densities due to the elective distribution of the electrostatic polarization
(P). Since the electrostatic potential energy of this elective distribution of
the external electric charge is U = 1/2

∫
Vh

ρφdv, in which (Vh is the whole

space and) φ is only arising from ρ (not from both ρ and P), we shall have
U = 1/2

∫
Vh

φ∇·Ddv, and since
∫

Vh
φ∇·Ddv =

∫
Vh
∇· (φD)dv−

∫
Vh

D ·
∇φdv =

∫
Sh

φD·n̂′da−
∫

Vh
D·∇φdv = 0−

∫
Vh

D·(−Eρ)dv =
∫

Vh
D·Eρdv

(Vh and Sh being in turn the whole space and the total surfaces of the
problem (which of course there is not any surface)), we shall have

U =
1

2

∫
Vh

D ·Eρdv (2)

in which as we said“ U is the electrostatic potential energy of an elective
distribution of the external electric charge with the density ρ, and we have
∇ ·D = ρ in which D = ε0E + P in which P is an elective distribution
of electrostatic polarization and E is arising from both P and ρ, while
Eρ is the field arising only from ρ. ” It is obvious that this electrostatic
potential energy has been distributed in the space with the volume density
u = 1/2D · Eρ. (We saw previously that ∇ ·D1 = ∇ ·D2. Uniqueness
of the electrostatic potential energy of a definite distribution of external
electric charges with the density ρ necessitates having 1/2

∫
Vh

D1 ·Eρdv =

1/2
∫

Vh
D2 · Eρdv ; but although these total energies are equal to each

other this won’t necessarily mean that the energy densities are also the
same, ie we cannot infer D1 · Eρ = D2 · Eρ or D1 = D2 (although their
divergences are equal).)
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It is very opportune to compare the above accurate definition of the
electrostatic potential energy with what is set forth for discussion under
this very title in the present electromagnetic books, and to pay attention
to the existent inaccuracy in the definitions of the involved terms caused
by the omission of the subscript ρ from the term Eρ. This is a sample
of the existent inaccuracies in the present current electromagnetic the-
ory specially in not correct distinguishing between different electric fields.
This mistake has caused that, considering relation D = εE for linear di-
electrics, wrong relations like u = 1/2εE2 = 1/2D2/ε to be current in
present electromagnetic textbooks. We shall pay to some other mistakes
soon.

3.2 Independence of capacitance from dielectric

Consider a system consisting of some fixed perfect conductors and some
linear dielectrics in the space exterior to the conductors and some fixed
distribution of external charge density in this space. We want to obtain
electrostatic potential energy arising from all the free net charges on these
conductors, ie the electrostatic potential energy of that part of the charge
distribution in all of the conductors which comes into existence as a result
of these free net charges (which of course does not include electrostatic
potential energy of the polarization and distribution of external charges
and that (other) part of the charge distribution in all of the conductors
which comes into existence as a result of these polarization and external
charges). Since each conductor is an equipotential region for the potential
arising from these free net charges, for this electrostatic potential energy
we have U = 1

2

∑N

j=1
Qjφj from the relation (1), in which Qj is the

net charge of the conductor j and φj is the electrostatic potential on
the conductor j arising from all free net charges of the conductors of
the system (ie one related to free net charges themselves and their effect
on the conductors, not also related to dielectric polarization and other
external charges and their effect on the conductors). What is necessary to
be emphasized again (and is important in the coming discussion) is that
the φj ’s are arising only from net charges of the conductors not also from
the polarization charges.

Using the coefficients of potential for this system we can also write
φi =

∑N

j=1
pijQj in which Qj is the net charge of the conductor j,

and φi is the electrostatic potential on the conductor i arising from all
(Qj ’s ie all) net charges of the conductors of the system (ie one re-
lated to free net charges themselves and their effect in the conductors,
not also related to dielectric polarization and other external charges and
their effect on the conductors). Combining the two recent relations yields

U = 1
2

∑N

i=1

∑N

j=1
pijQiQj for the electrostatic potential energy arising

from free net charges of the conductors of a system consisting of some per-
fect conductors and probably some linear dielectrics and external charge
distribution outside the conductors.
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A capacitor is defined as two conductors (denoted by 1 and 2), from
among a definite configuration of some conductors, that one of them bears
net charge Q (Q being greater than or equal to zero) and the other one
bears −Q. (Existence of net charges on other conductors in the configu-
ration or of linear dielectrics or external charges outside the conductors
and the effect which each has on these two conductors (ie 1 and 2) are
not important at all. We shall find out this soon.)

By using the relation φi =
∑N

j=1
pijQj for the above capacitor we

have:
φ1 = p11Q + p12(−Q) + 0}⇒ ∆φ = φ1 − φ2 = (p11 + p22 − 2p12)Q = Q/Cφ2 = p21Q + p22(−Q) + 0

(We know that p12 = p21 proof of which can be seen in many of the
electromagnetic books.) We have attention that in the relation ∆φ =
Q/C, ∆φ is the potential difference between the potential arising from net
charges of the conductors 1 and 2 (related to themselves and their effect
in other conductors) on the conductor 1 and the potential arising from
these charges (related to themselves and their effect in other conductors)
on the conductor 2. Therefore, since the potential of other charges is
not considered and considering linearity of potentials and that C, which
is called as the capacitance of the capacitor, depends only on the form
of the configuration of all (and not only two) of the conductors, it is
obvious that existence of net charges on the conductors other than the
conductors 1 and 2 and existence of any linear dielectrics or external
charges in the space exterior to the conductors, so far as the configuration
of the conductors is constant, are unimportant (and there is no need that
one of the conductors 1 and 2 be shielded by the other, the way presented
in some electromagnetic books for the potential difference independence
of whether other conductors are charged). We specially emphasize again
that so, we have proven that the capacitance (C) of a capacitor does not
depend on whether there exist any dielectrics at all and only depends
on the configuration of the conductors introduced in the definition of the
capacitor.

Using the relation U = 1
2

∑N

i=1

∑N

j=1
pijQiQj we obtain

U =
1

2
Q2/C =

1

2
Q∆φ =

1

2
C(∆φ)2 (3)

for the electrostatic potential energy of the charges Q and −Q (them-
selves and of their effect). We should emphasize again that in the recent
relation, ∆φ is the potential difference arising from the free charges Q
and −Q (and not also from eg polarization charges), and C depends only
on the configuration of the conductors (and not also on eg existence or
nonexistence of linear dielectrics).

At the end of this section let’s obtain the capacitance of a capacitor
consisting of two parallel plates in which the plates separation d is very
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small compared with the dimensions of the plates:

C =
Q

(∆φ)Q
=

Q

EQd
=

Q

σd/ε0
=

Q

(Q/A)d/ε0
=

ε0A

d
,

in which (∆φ)Q and EQ are the potential difference and the electrostatic
field arising from Q and −Q (and not also from the polarization charges)
respectively. Therefore, the capacitance of this capacitor is ε0A/d regard-
less of whether there exist any linear dielectrics between the parallel plates
or not.

And now see the present books of Electricity and Magnetism in which
without attention to this fact that ∆φ must be arising only from the ca-
pacitor charge, the relation ∆φ = Ed, in which E is arising from not only
the capacitor charge but also the linear dielectrics polarization charges, is
used and consequently wrong expression εA/d is obtained for the capaci-
tance.

3.3 Dielectric as source of potential

We saw that the mathematical discussions presented so far proved inde-
pendence of the capacitance of a capacitor from its dielectric. But this is
doubtlessly surprising for the physicists and engineers, because they know
well that dielectric has a substantial part in accumulation of charge in the
capacitor. This section is intended for obviating this surprise.

It is made use often of electroscope to show the effect of dielectrics in
capacitors. If the two conductors of a charged capacitor are connected to
an electroscope, leaves of the electroscope will get away from each other.
Now, if, without any change in the configuration of the capacitor’s conduc-
tors, a dielectric is inserted between the two conductors of the capacitor,
the leaves of the electroscope will come close to each other. Current justifi-
cation of this phenomenon is as follows (eg see University Physics by Sears,
Zemansky and Young, Addison-Wesley 1987): “The equation C = Q/∆φ
shows the relation among the capacitor’s capacitance, capacitor’s charge,
and the potential difference between the two conductors of the capacitor.
When a dielectric is inserted into the capacitor, due to the orientation of
the electric dipoles of the dielectric in the field inside the capacitor some
polarization charge opposite to the charge of each conductor of the capac-
itor is induced on that surface of the dielectric which is adjacent to this
conductor, and then the electrostatic field in the dielectric, and thereby
the potential difference (between the two conductors), arising from both
the capacitor’s charge and this induced polarization charge is decreased.
Then, the denominator of C = Q/∆φ decreases which results in increas-
ing of the capacitance (C) considering that Q remains uncharged, ie the
capacitor’s capacitance increases by inserting a dielectric between the ca-
pacitor’s conductors. That the leaves of the electroscope come closer to
each other by inserting the dielectric is because of this same decreasing of
the potential difference, ∆φ. ”
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It is clear that considering the discussion presented in this article, the
above justification is quite wrong, because ∆φ is the potential difference
arising only from the capacitor’s charge not also from the polarization
charge formed in the dielectric. But why do the leaves of the electroscope
come closer to each other when a dielectric is inserted into the capacitor?
Its reason is quite obvious. Metal housing and the leaves connected to
the metal knob of the electroscope, themselves, are in fact a capacitor,
which when are connected separately to the two conductors of the ca-
pacitor under measurement, a new (equivalent) capacitor will be formed
consisting of two conductors: the first being one of the conductors of the
capacitor under measurement and the electroscope’s metal housing which
is connected to it, and the second being the other conductor of the ca-
pacitor under measurement and the set of the knob and the leaves of the
electroscope which is connected to this conductor. It is obvious that if
the capacitor under measurement is charged at first, its charge now, after
its connecting to the electroscope, will be distributed throughout the new
formed capacitor and then a part of the charge of the primary capacitor
now will go to the electroscope because of which the leaves of the electro-
scope will get away from each other (because the opposite charges induced
in the electroscope will attract each other causing drawing of the leaves
toward the electroscope’s housing which itself means more separation of
the leaves from each other).

By inserting the dielectric into the capacitor we cause creation of po-
larization charges in the dielectric which this, in turn, causes more charges
of the new formed capacitor to be drawn towards the dielectric. Thus,
the distribution of the charge will be changed in such a manner that a
part of the charge distribution in the electroscope will go to the primary
capacitor (or the one under measurement) to be placed as close as possible
to the dielectric; this means decrease of the electroscope’s charge which
will cause its leaves to come closer to each other. Therefore, the act of
the dielectric is change of the charge distribution in the new capacitor
formed from the primary capacitor and the electroscope, not change of
the capacitance of the primary capacitor.

Now, let’s connect the two plates of a parallel-plate capacitor by a
wire in the space exterior to the space between the plates. What will
happen if a slice of a dielectric having a permanent electric polarization is
inserted between the two plates of the capacitor? The polarized dielectric
will cause induction of charge on the two plates; the positive surface of
the slice will induce negative charge on the plate adjacent to it, and the
negative surface will induce positive charge on the (other) plate adjacent
to it. Induction of charge on the two plates, while they had no charge
beforehand, means that while inserting the dielectric between the plates
an electric current has been flowing in the wire from one plate to the
other. In other words the dielectric acts like a power supply producing
electric current or charging the capacitor. Then, we can attribute electric
potential difference to it (like the potential difference between the two
poles of a battery).

13



Now, how will the situation be if the inserted dielectric is not to have
previous polarization but it is to be polarized because of the charge (or in
fact the electric field produced by the charge) of the capacitor? Answer
is that the situation will be similar to the same state of permanent polar-
ization, and again the dielectric acts as a source of potential. Its physical
and direct reason can be seen easily in the discussion we presented about
the electroscope. There, we saw that inserting the dielectric, charge dis-
tribution was changed in such a manner that some more charges were
accumulated on the conductors of the (primary) capacitor. It is clear
that more accumulation of charge on the capacitor necessitates flowing of
electric current in the circuit. Cause of this current and of the more ac-
cumulation of charge on the capacitor is the source of potential difference
which we must attribute to the dielectric.

In this manner, the purpose of this section has been fulfilled prac-
tically; in electric circuits wherever a dielectric is to exist between the
conductors of a capacitor, a proper source of voltage must be considered
in the circuit in the same place of the dielectric. Such a voltage source
causes accumulation of charges on the conductors of the capacitor more
than when there exists no dielectric in the capacitor. One can say whether
this act is not equivalent to defining, in principle, the capacitance of a ca-
pacitor equal to the charge accumulated on the capacitor (due to both the
configuration of the capacitor’s conductors and the electric induction in
the conductors caused by the polarization of the dielectric) divided by the
potential difference between the two conductors of the capacitor (which is
the method that current instruments measuring capacitor’s capacitances
work based on it) and no longer considering the dielectric as a source of
potential. Following example shows that consequences of such a definition
in practice are not equivalent to the practical consequences of the main
definition of capacitance of capacitor (although can be close to it under
suitable conditions). We then shall investigate another example which will
show, well, considerable differences that can come into existence if role of
the dielectric as a power supply in the circuit is not taken into considera-
tion, according to which a quite practical criterion for testing the theory
presented in this section in comparison with the current theory will be
presented.

3.4 Some examples as test

Let’s connect the two plates of a dielectricless parallel-plate capacitor to
the two poles of a battery. At the end of the section 3.2 we saw that the
capacitance of such a capacitor is ε0A/d in which A is the capacitor’s area
and d is the distance between its plates. Then, according to the relation
C = Q/∆φ for the capacitor’s capacitance, we have ε0A/d = σA/V in
which σ is the surface density of the charge accumulated on the capacitor
and V is the potential difference given to the two plates of the capacitor
by the battery. In this manner we have:

σd = ε0V. (4)
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Now we fill the space between the two plates with a linear dielectric
with the permittivity ε. We indicate the magnitude of the formed electric
polarization in the dielectric by P . P is in fact equal to the surface density
of the polarization charge in the dielectric. Suppose that a charge exactly
equal to the polarization charge is induced on the plates of the capacitor.
(Indeed, in the state of induction of charge in the capacitor due to the
polarized dielectric between the capacitor’s plates we should suppose that
the two plates of the capacitor are connected to each other by a wire in
the space exterior to the space between the plates; in other words in this
state the battery existent in the circuit does not play any role except as
a short circuit.) Then the charge induced on the capacitor due to the
polarization of the dielectric is equal to PA. This charge, as we said, has
been stored in the capacitor because of a source of potential difference,
equal to V ′, which we must attribute to the dielectric; ie because of the
potential difference V ′ exerted to the two plates of the capacitor the charge
PA has been accumulated in the capacitor, and then the ratio PA/V ′ is
equal to the capacitor’s capacitance ε0A/d = PA/V ′. Considering that
P = (ε − ε0)E = (ε − ε0)σ/ε in which E is the electrostatic field arising
from both the external and polarization charges we infer from this relation
that V ′ = (ε− ε0)σd/(εε0) which considering Eq. (4) results in

V ′ = (1− ε0
ε

)V = (1− 1

K
)V (5)

Let’s calculate sum of the charges (Q) accumulated on this capacitor
(due to both the configuration of the capacitor’s conductors and the in-
duction arising from the (polarization of the) dielectric). For this act we
must add the potential difference arising from the dielectric to the poten-
tial difference given by the battery and after that multiply the sum by the
(real) capacitance of the capacitor C = ε0A/d :

Q = (V + (1− ε0
ε

)V )
ε0A

d
= (2− ε0

ε
)
ε0A

d
V = (2− 1

K
)CV (6)

Can we present another definition of capacitance of capacitor, for con-
venience in practice, equal to sum of the charges accumulated on the
capacitor (consisting of the charges arising from both the configuration of
the capacitor’s conductors and the induction due to the dielectric) divided
by the potential difference between the two capacitor’s conductors, given
to the capacitor only by the battery (or the circuit)? Considering Eq. (6)
such a definition gives the following (newly defined) capacitance of our
capacitor equal to

Q

V
= (2− ε0

ε
)
ε0A

d
. (7)

Is this definition useful in practice, and does it yield real consequences?
The answer is negative. It is sufficient only instead of a single capacitor to
consider n capacitors connected in series such that the space between the
plates of only one of them is filled with dielectric and to try to calculate
the accumulated charges on the equivalent capacitor.
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If all of these n capacitors were dielectricless, because of the identity
between the capacitors the (shared) potential difference between the two
plates of each of these capacitors would be V/n. When only one of these
capacitors is filled with a linear dielectric with the permittivity ε, the po-
tential difference related to this dielectric (as a source of potential), similar
to Eq. (5) will be (1−ε0/ε)V/n. Since these n capacitors are identical and
the capacitance of each of them is ε0A/d, the equivalent capacitance of
these n capacitors which are connected in series will be obtained by solv-
ing the equation 1/C1 = n/(ε0A/d) for C1 equal to ε0A/(nd). Therefore,
the charge accumulated on each capacitor is equal to

(V + (1− ε0
ε

)
V

n
)
ε0A

nd
= (1 +

ε− ε0
nε

)
ε0A

nd
V. (8)

But now let’s see if the capacitance of the capacitor having dielectric is
to be equal to (7) while the capacitance of each of the other capacitors is
equal to ε0A/d, whether or not the charge accumulated on each capacitor
will be obtained still equal to (8) when no longer the source of potential
difference related to the dielectric is considered in lieu of considering (7)
for the capacitance of the capacitor having dielectric. Equivalent capaci-
tance of the capacitors which are in series will be obtained by solving the
equation

1

C2
=

n− 1

ε0A/d
+

1

(2− ε0
ε

)ε0A/d

for C2, and charge of each capacitor should be considered equal to C2V :

C2V =
1

n− 1 + ε
2ε−ε0

· ε0A

d
V. (9)

Obviously the coefficient of ε0AV/d in Eq. (8) is not equal to the
coefficient of ε0AV/d in Eq. (9) except when ε = ε0 or n = 1. Thus, we
see that the new definition we tried to present for capacitance of capacitor
is not so useful in practice (at least in this example does not give the
real charge accumulated on the capacitors). But the ratio of these two
coefficients is not so far from one. To see this fact let’s indicate ε/ε0 by
K and obtain the ratio of the coefficient of ε0AV/d in Eq. (9) to the
coefficient of ε0AV/d in Eq. (8):

(n− 1 + ε/(2ε− ε0))
−1

(1/n) + ((ε− ε0)/n2ε)
= 1/(1 +

(K − 1)2(n− 1)

(2K − 1)Kn2
)

It is seen that the degree of the term (K−1)2(n−1)/((2K−1)Kn2) with
respect to K is zero and with respect to n is −1; thus this term is close
to zero practically, or in other words the ratio of the above-mentioned
coefficients is close to one practically. This matter is itself a good reason
that why the definition of capacitance in the form of capacitor’s charge
divided by the potential difference exerted on the capacitor’s conductors
(Eq. (7)) has been able to endure practically and the difficulties due to
such a definition has remained hidden in practice. But, important for a
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physicist should be mathematical much exactness and discovery of what
actually occurs or exists. In order to find out that such an exactness
can be important even in practice (and then won’t be negligible even for
engineers) notice the following example.

Consider a series circuit of RLC, which its capacitor is parallel-plate
and dielectricless, connected to a constant voltage V. After connection of
the switch in the time t = 0, the equation of the circuit will be

V = RI + L
dI

dt
+

1

2C

∫ t

t=0

I(t)dt. (10)

(We should notice that as it has been proven in the paper “Two kinds
of potential difference for a capacitor”, in this circuit we must consider
the circuital potential difference of the capacitor, ie the third term of the
right-hand side of (10), not as it is usual wrongly its electrostatic potential

difference ie 1
C

∫ t

t=0
I(t)dt. There, also we shall see that what the current

instruments measure as capacitance is in fact two times more than the ca-
pacitance. Another noticeable point being that as it has been explained in
the paper “Electromagnetic theory without the Lorentz transformations”,
L in (10) is in fact equal to µε′a′L∗

B not equal to only dΦ∗
B/dI(= L∗

B)
according to its usual definition. But since the current instruments for
measuring L work based on the formula E = −LdI/dt, they are in fact
measuring µε′a′L∗

B as L because as we can see in that article the correct
relation is in fact E = −µε′a′L∗

BdI/dt.)

With one time differentiation of this equation with respect to time,
the following equation will be obtained considering that V is a constant:
Ld2I/dt2 + RdI/dt + I/(2c) = 0. If R/(2L) < (2LC)−1/2, this equation
will be solved as I = ae−Rt/(2L) cos(ωnt− θ) in which

ωn =

√
1

2LC
− R2

4L2
(11)

and a and θ are two arbitrary constants. Since in t = 0 we have I = 0
and then also from Eq. (10) we have dI/dt = V/L, we conclude that
a = V/(ωnL) and θ = π/2, and then

I =
V

ωnL
e−

Rt
2L sin ωnt. (12)

For calculating the voltage drop in the capacitor we should calculate the
third term of the right-hand side of Eq. (10):

1

2C

∫ t

t=0

V
ωnL

e−
Rt
2L sin(ωnt)dt = V(1− e−

Rt
2L (cos ωnt +

R

2ωnL
sin ωnt))

(13)

Now, if the space between the two plates of the capacitor (without
any change in the configuration of the plates) is to be filled by a linear
dielectric with the permittivity ε, we must multiply the negative of the
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voltage drop in the capacitor ((13)) by (1−ε0/ε) in order that according to
Eq. (5) the potential difference which we must attribute to the dielectric
as source of potential is obtained. We then should add this source to the
previous constant source and equate the sum to the right-hand side of Eq.
(10):

V+V[e−
Rt
2L (cos ωnt+

R

2ωnL
sin ωnt)−1](1− ε0

ε
) = RI+L

dI

dt
+

1

2C

∫ t

t=0

I(t)dt

(14)
With one time differentiation of this equation with respect to time the
following equation will be obtained:

L
d2I

dt2
+ R

dI

dt
+

1

2C
I = V(1− ε0

ε
)

2ωnL

R2C − 2L
e−Rt/(2L) sin(ωnt)

Particular solution of this equation is

V

2L−R2C
(1− ε0

ε
)te−Rt/(2L) cos(ωnt),

and general solution of its corresponding homogeneous equation is
ae−Rt/(2L) cos(ωnt− θ) with the two arbitrary constants a and θ. Then
general solution of this equation is

I = ae−Rt/(2L) cos(ωnt− θ) +
V

2L−R2C
(1− ε0

ε
)te−Rt/(2L) cos(ωnt)

with the two arbitrary constants a and θ. For obtaining a and θ by means
of the initial conditions, we should be careful that initial conditions must
be fit, ie t = 0 should be the same moment that, without dielectric, the
current in the circuit was zero and we had dI/dt = V/L; and now, when
the dielectric has been inserted, we should see how the conditions change,
and in this moment (t = 0) what the current and its time derivative are
as initial conditions. The physics of the problem says that we have in this
state I = 0 in this moment too, and then also it is clear from Eq. (14)
that in this moment we have dI/dt = V/L too. Then

a =
V

ωnL
+

V
ωn(R2C − 2L)

(1− ε0
ε

) =
L(1 + ε0/ε)−R2C

2L−R2C

V
ωnL

and θ = π/2.
Thus

I =
L(1 + ε0/ε)−R2C

2L−R2C

V
ωnL

e−Rt/2L sin ωnt+
V

2L−R2C
(1− ε0

ε
)te−Rt/2L cos ωnt

(15)

(It is noticeable that when ω = ω0 the same Eq. (12) will be obtained
from this equation.) We obtained Eq. (15) for the current of the circuit,
while what is current at present is that inserting the linear dielectric (with
the permittivity ε) between the plates of the capacitor only the capacitor’s
capacitance changes from C to KC where K = ε/ε0 (without any addition
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of new source of potential to the circuit), and then the circuit’s current has
the same form of Eq. (12) with this only difference that in the equation
related to ωn (Eq. (11)) we must write KC instead of C.

Now suppose that instead of the constant voltage V we have an al-
ternating voltage in the form of V(t) = V0 sin(ωt − θ′)(in which θ′ is a
constant value) as the main source of potential in the series circuit of
RLC which its parallel-plate capacitor is dielectricless. In such a case we
have

V0 sin(ωt − θ′) = RI + L
dI

dt
+

1

2C

∫ t

t=0

I(t)dt (16)

and then Ld2I/dt2 + RdI/dt + I/(2C) = V0ω cos(ωt − θ′). Particular
solution of this equation is a1 cos(ω − θ′ − θ1) in which

a1 = V0/

√
(

1

2Cω
− Lω)2 + R2 (17)

and

θ1 = cot−1 (2ωC)−1 − L

R
. (18)

Since solution of its corresponding homogeneous equation is

ae−Rt/(2L) cos(ωnt− θ),

the general solution of this equation is

I = ae−Rt/(2L) cos(ωnt− θ) + a1 cos(ωt− θ′ − θ1) (19)

with the two arbitrary constants a and θ (of course assuming thatR/(2L) <
(2LC)−1/2).

We suppose that we have I = 0 in t = 0 and from Eq. (16) we have
dI/dt = −V0 sin θ′/L in this moment. Having these initial values we can
obtain a and θ, but since the first term of the right-hand side of Eq. (19)
is transient, this act is of no importance for us. (Nevertheless, they should
be obtained by solving the system of

a cos θ = −a1 cos(θ′ + θ1){ a sin θ = − 1
ωn

(V0 sin θ′

L
+ Ra1

2L
cos(θ′ + θ1) + a1ω sin(θ′ + θ1))

for a and θ.)

Now, as before, having the form of current (Eq. (19)) we obtain voltage
drop in the capacitor:

1

2C

∫ t

t=0

(ae−Rt/2L cos(ωnt− θ) + a1 cos(ωt− θ′ − θ1))dt

= a[e−Rt/2L(ωnL sin(ωnt− θ)− R

2
cos(ωnt− θ)) + ωnL sin θ +

R

2
cos θ]+

a1

2ωC
[sin(ωt− θ′ − θ1) + sin(θ′ + θ1)]. (20)
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And now, as before, if the space between the two plates of the capac-
itor is to be filled by a linear dielectric with the permittivity ε (without
any change in the plates’ configuration), in order to obtain the potential
difference that we must attribute to the dielectric as a source of potential
in the circuit, according to Eq. (5) we should multiply the negative of
the potential drop in the capacitor (20) by (1− ε0/ε). We then must add
this source to the initial alternating source and equate the sum to the
right-hand side of Eq. (16):

V0 sin(ωt− θ′) + a(1− ε0
ε

)[e−Rt/2L(
R

2
cos(ωnt− θ)− ωnL sin(ωnt− θ))

−ωnL sin θ − R

2
cos θ]− a1

2ωC
(1− ε0

ε
)[sin(ωt− θ′ − θ1) + sin(θ′ + θ1)]

= RI + L
dI

dt
+

1

2C

∫ t

t=0

I(t)dt.

With one time differentiation of this equation with respect to time the
following equation will be obtained:

Ld2

dt2
+ R

dI

dt
+

1

2C
I = V0ω cos(ωt− θ′)

−a(1− ε0
ε

)(
R2

4L
+ ω2

nL)e−Rt/2L cos(ωnt− θ)

− a1

2C
(1− ε0

ε
) cos(ωt− θ′ − θ1) (21)

For obtaining the particular solution of this equation we must add up
particular solutions of the following equations (for reason see Differential
Equations with Application and Historical Notes by Simmons, McGraw-
Hill Inc., 1972):

Ld2I

dt2
+

RdI

dt
+

1

2C
I = V0ω cos(ωt− θ′) (22)

Ld2I

dt2
+

RdI

dt
+

1

2C
I = −a(1− ε0

ε
)(

R2

4L
+ ω2

nL)e−Rt/2L cos(ωnt− θ) (23)

Ld2I

dt2
+

RdI

dt
+

1

2C
I = − a1

2C
(1− ε0

ε
) cos(ωt− θ′ − θ1) (24)

We then must add the obtained particular solution to the general solution
of the corresponding homogeneous equation to obtain the general solution
of Eq. (21).

Both the general solution of the homogeneous equation and particular
solution of Eq. (23) are (trigonometric) multiples of e−Rt/(2L), thus these
two terms in the general solution of Eq. (21) are transient and then
unimportant for us. Thus, for obtaining the nontransient part of the
general solution of Eq. (21) we should obtain the particular solution of
the equations (22) and (24) and then add them up.
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Particular solution of Eq. (22) is

2V0Cω

4L2C2ω4 + 4(R2C − L)Cω2 + 1
[(1−2LCω2) cos(ωt−θ′)+2RCω sin(ωt−θ′)]

and particular solution of Eq. (24) is

−a1

4L2C2ω4 + 4(R2C − L)Cω2 + 1
(1− ε0

ε
)[(1− 2LCω2) cos(ωt− θ′ − θ1)

+2RCω sin(ωt− θ′ − θ1)].

If we write the trigonometric terms in the recent solution in terms of
the sine and cosine of the arguments (ωt − θ′) and θ1, and add up the
particular solutions obtained for the equations (22) and (24), and equate
the sum to the expression a2 cos(ωt− θ′− θ2), and use the equations (17)
and (18), we shall finally obtain:

a2 cos θ2 = 2V0Cω

· (1− 2LCω2)(4R2C2ω2 + (1− 2LCω2)2) + (1− ε0/ε)(4R2C2ω2 − (1− 2LCω2)2)

(4R2C2ω2 + (1− 2LCω2)2)2

(25)
and

a2 sin θ2 = 4V0RC2ω2·4R2C2ω2 + (1− 2LCω2)2 − 2(1− ε0/ε)(1− 2LCω2)

(4R2C2ω2 + (1− 2LCω2)2)2

(26)
We can solve these equations to obtain a2 and θ2 in order that the nontran-
sient solution a2 cos(ωt− θ′ − θ2) for the circuit current will be obtained
unambiguously. The value which is obtained for the amplitude a2 from
these equations is

a2 =
2V0Cω

√
4R2C2ω2 + (K−1 − 2LCω2)2

4R2C2ω2 + (1− 2LCω2)2
(27)

in which K = ε/ε0. (It is easily seen that for K = 1 the same amplitude
a1 presented in Eq. (17) will be obtained from a2.)

Now if, as it is thought at present, after inserting the dielectric between
the capacitor’s plates its capacitance is to increase to KC and no more,
then we must conclude that the amplitude of the (nontransient) current is
in the same form shown in Eq. (17) except that KC must be substituted
for C in this equation. Namely, the magnitude of such an amplitude will
be:

(
V0√

((2KCω)−1 − Lω)2 + R2
=)

2V0Cω√
4R2C2ω2 + (K−1 − 2LCω2)2

(=
2V0Cω

√
4R2C2ω2 + (K−1 − 2LCω2)2

4R2C2ω2 + (K−1 − 2LCω2)2
). (28)
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A comparison between (27) and (28) shows that their variations with K
is opposite to each other, ie if (27) increases with increase of K, (28) will
decrease with increase of K, and if (27) decreases with increase of K, (28)
will increase with increase of K, and vice versa. For example on condition
that ω2 being greater than or equal to 1/(2LC) the expression (27) in-
dicates that the current’s amplitude increases by inserting the dielectric,
while the expression (28) says that this amplitude must decrease under
the same condition. Investigating that whether or not experiment shows
that provided that ω2 being greater than or equal to 1/(2LC) current
intensity of the circuit increases by inserting dielectric between the capac-
itor’s plates is a good test for accepting the theory presented here and
rejecting the current one or vice versa.

To find the resonance frequency of the circuit it is sufficient to differ-
entiate from the right-hand side of Eq. (27) with respect to ω and then
to equate the obtained result to zero and to solve the obtained equation
for ω. By doing this act we obtain the following result for the square of
the resonance frequency ωr:

ω2
r =

2(K − 1) +
√

4(K − 1)2 + 1

2LCK
(29)

(It is seen that for K = 1, square of the resonance frequency is 1/(2LC)
which is just the same result which Eq. (17) predicts for the square of
the resonance frequency. (Reminding of this point is necessary that as we
said we have L = µε′a′L∗

B here.))

Now, let’s see what the prediction of the present current belief is
for the resonance frequency of the circuit. It says that since inserting
the dielectric (according to its belief) the amplitude of the current is

V0/
√

((2KCω)−1 − Lω)2 + R2 (see Eq. (28)), the square of the reso-
nance frequency will be:

ω2
r =

1

2LCK
(30)

A simple mathematical try shows that the coefficient of 1/(2LC) in (29)

(ie (2(K−1)+
√

4(K − 1)2 + 1)/K) is an ascending function of K, while
the coefficient of 1/(2LC) in (30) (ie K−1) is a descending function of
K. Namely, the analysis presented here shows that by inserting dielectric
between the capacitor’s plates the resonance frequency increases, while
according to the current belief this frequency must decrease.

NOTE:

That actually whether or not the resonance frequency of the circuit in-
creases with inserting dielectric between the plates of the capacitor (with-
out any change in the plates’ configuration) is a quite practical test for
establishing the validity of the theory presented in this article and inva-
lidity of the current belief in this respect, or vice versa. Recently this
experiment has been performed with a brilliant success for the theory
presented in this article showing specifically increase of the resonance fre-

22



quency when inserting the dielectric. Here is the report of an electronics
engineer who could not believe the result of his experiments in this respect:

“Oh, yes, indeed the resonant frequencies do change as drastically as
you suggest if you put a dielectric with high dielectric constant between
the parallel plates of a capacitor. I’ve put an example at the end of this
posting.

Example of capacitor with high-K dielectric.... You can buy“disc ce-
ramic ” capacitors with about 1.0nF capacitance. These are nominally
1cm diameter, with nominally 0.5mm plate separation, with dielectric
only between the conductive plates. The dielectric has a very high dielec-
tric constant. If you resonant such a capacitor with, say, a 5µH inductor,
you will find its resonant frequency will be about 70kHz. You can replace
that capacitor with one with the same plate size and spacing but air di-
electric, resulting in roughly 0.5pF capacitance. Then you will find that
the measured resonant frequency depends on the self-resonance of the in-
ductor, because you will be very hard-pressed to make a 5µH inductor
with self-capacitance as low as 0.5pF . If you choose an inductor of, say,
1µH, properly constructed, then you might reasonably see the effects of
0.5pF , but now you will be dealing with much more awkward (especially
if you have limited access to good test equipment) resonant frequencies in
the hundreds of MHz. You will indeed find that the resonant frequency
of that inductor with the nominal 1.0nF ceramic-dielectric capacitor will
be on the order of 5MHz. The Q in each case should be high enough
(with a well-constructed inductor) to give an easily measured resonant
frequency. I -could- do the experiment to specifically demonstrate the
-dramatic- shift in resonance, and even use other dielectrics less extreme,
but I feel no need to: as I told you before, I -routinely- design resonant
circuits and filters, even taking into account the effects of stray capaci-
tance and inductance and the resistances of things like circuit board traces
where appropriate, and within my understanding of the tolerances of the
parts and the effects of the strays, I’m never surprised. I am CERTAINLY
never surprised by a resonance shifting higher as I increase capacitance so
long as I’m within the practical range of the parts I’m using.

Note on 1µH coil: If you make a coil with #18AWG wire, which
is about 1.0mm diameter, and make that coil with uniformly spaced
turns, about 2.6cm diameter turns, spaced out 2.5cm total coil length, it
will have an inductance about 1.0µH, and its first parallel self-resonance
at about 190MHz. That implies about 0.7pF effective self-capacitance.
Adding an external 0.5pF capacitance would drop the resonant frequency
to about 145MHz. ”

(It is probable that the instrument by which one measures resonance
frequency needs to obtain the capacitance of the capacitor before calcu-
lating the resonance frequency based on the formula ωr = 1/(2LC). If so,
there are two errors in such a measurement:
1. The process in which the current instruments measure capacitance of
a capacitor is not accurate, because as we explained at the end of Section
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3.3 (in these instruments) this capacitance is defined (wrongly) as the
charge accumulated on the capacitor divided by the potential difference
between the two conductors of the capacitor.
2. As it has been proven (Eq. (29)), the above formula is not correct.)

At present dielectric constant is determined in one of the two following
manners:
1. A parallel-plate capacitor is connected to a constant voltage two times:
(first) when its dielectric is vacuum (or air), and (second) when its dielec-
tric is the substance under measurement. The geometry of the conductors
remains unchanged. Since it is supposed that the capacitance of the ca-
pacitor is increased with the dielectric, the ratio of the gathered charge in
the second state to the gathered charge in the first state is the dielectric
constant of the substance.
2. Instead of retaining the voltage unchanged, we put a unique charge
on the capacitor two times: (first) when its dielectric is vacuum, and
(second) when its dielectric is the substance under measurement. The
geometry of the conductors remains unchanged. Since it is supposed that
the capacitance of the dielectric is increased with the dielectric, the ratio
of the potential difference between the plates in the first state to the
potential difference between them in the second state is the dielectric
constant of the substance.

Certainly the above methods don’t give the dielectric constant accord-
ing to the contents of this article in which it has been proven that the
capacitance of a capacitor depends only on the geometry of the conduc-
tors and not also on its dielectric. Thus, what are in fact those measured
as dielectric constant by these methods?

At the beginning of Section 3.4 it has been proven that the charge
accumulated on a parallel-plate capacitor with area A and plates’ separa-
tion d and a linear dielectric with the permittivity ε, which the potential
difference between its plates is V , is: (Eq. (6))

Q = (2− ε0
ε

)ε0
A

d
V

What has been done in the first method above is in fact calculating

(2− ε0/ε)ε0(A/d)V

ε0(A/d)V
= 2− ε0

ε
= 2− 1

K

as the dielectric constant (K). And what has been done in the second
method is in fact calculating

Q/(ε0
A
d
)

Q/((2− ε0
ε

)ε0
A
d
)

= 2− ε0
ε

= 2− 1

K

as the dielectric constant (K). Anyhow, what is at present considered as
K is indeed 2− (1/K). Since ideally K at least is 1 (for vacuum) and at
most is infinity, what is measured as K at present (ie in fact 2−1/K) can
be at least 1 and at most, for the best linear dielectrics, 2.
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Reviewing different tables of the dielectric constants in different texts
shows that these constants scarcely exceed 2 or 3 for the best linear di-
electrics, although for some materials this constant even exceeds 100. (For
example it is 2 for paper, paraffin, mineral oil, Indian rubber, ebonite,
benzene, teflon, mica, wood, polyethylene, liquid CCl4 and CS2 (while
for liquid O2 and A is 1.5), ...., but is suddenly near 100 for water.) In
addition, there is notable difference between the constants registered in
different texts. It seems that there is a drastic uncertainty in the results
obtained by the above-mentioned methods (esp when there is a huge dif-
ference from 2). The cause of this uncertainty should be searched (maybe
in the nonlinearity of the dielectrics), but anyway it can be said that
for almost all of the best linear dielectrics (the permittivity of which can
be taken infinity) the constant registered as (wrong) dielectric constant,
as the above reasoning predicts, is about 2 (indeed the (true) dielectric
constant of these good dielectrics is infinity).

Separate from the theory, now let’s prove physically that the above-
mentioned ratio of the gathered charges in the method 1 can not exceed
2: Suppose that a parallel-plate capacitor, connected to a constant volt-
age, when is dielectricless, gathers a charge Q. In this state suppose we
insert an ideal linear dielectric, with an infinite permittivity, between its
plates. When this linear dielectric is set in the field between the plates it
begins to become polarized, ie by ordering the molecular electric dipoles
of the dielectric the charges of the capacitor begin to be cancelled, but
the potential source to which the capacitor is connected compensates for
the cancelled charges of the capacitor in such a manner that the dielec-
tric is always in a constant electric field which its presence is essential
for the linear dielectric to maintain the polarization. (Notice the relation
P = (ε − ε0)E for a linear dielectric in which when ε = ∞ we shall have
E = 0 where E is arising from both polarized charge and that part of the
conductors’ charges which are gathered by these polarized charges. (If
we wish to consider E as the field arising from the polarized charges and
the whole charge of the capacitor, then the ε won’t be infinity (because
indeed in such a case it is not related to only the dielectric but the role of
the conductors (or capacitor) has been added to it).)) Thus, the dielectric
can attract, onto the capacitor, some additional charge at most equal to
the original charge of the capacitor (related to when there is no dielec-
tric). Then, the ratio of the charge of the capacitor with dielectric to one
without dielectric is at most 2Q/Q = 2 (and at least is Q/Q = 1 when
there is no order for the molecular electric dipoles even in the electric field
between the plates).

Surely there are some persons reckoning these reasonings as fantasy.
The following material may help them not to think so: The current usual
prediction for the resonance frequency of a series RLC circuit which its
dielectricless capacitor is parallel-plate, when its capacitor is filled with a
linear dielectric having dielectric constant K, is that square of the reso-
nance frequency drops by 1/K. If, in addition, the limitation of 2 is also a
fantasy for K in the above-mentioned 1/K, and K, depending on the used
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dielectric, can take amounts like 20, 30, 40, 80, 100, 200, 300, ..., then we
should conclude that the resonance frequency becomes almost zero when
these dielectrics are used (since eg square root of 1/300 is about zero).
A question: Is this the case or not? And in principle, is this reasonable?
But as we saw in this article the coefficient by which the square of the
resonance frequency, when the dielectric is inserted, increases is:

2(K − 1) +
√

4(K − 1)2 + 1

K
= 2(1− 1

K
) +

√
4− 8

K
+

5

K2

It is seen when K = 1, square of the resonance frequency is 1, and when
K is infinity, square of the resonance frequency is 4. This means that by
inserting a linear dielectric we expect that the resonance frequency will
become double at most (when we have an ideal linear dielectric with infi-
nite permittivity). That ratio of the resonance frequency with dielectric
to the one without dielectric is a number between 1 and 2 is analogous
to that the ratio of the charge gathered in the capacitor with dielectric to
the one without dielectric is a number between 1 and 2.

3.5 Again parallel-plate capacitor as another test

Now we obtain the electrostatic potential energy of the parallel-plate ca-
pacitor mentioned at the end of the section 3.2 by two methods. First,
using the relation U = 1/2C(∆φ)2Q we obtain U = 1/2(ε0A/d)(∆φ)2Q.

In the second method we use the relation (2), ie U = 1/2
∫

Vh
D ·EQdv

in which EQ is the field arising from Q and −Q (and not also from the
polarization charges). We have the following relation:

D = εE = ε(EQ + EP) = εEQ + εEP (31)

in which EP is the field arising only from the polarization charges of
the dielectric set between the two plates. Let’s obtain EP in terms of D.
Suppose that P is the polarization of the dielectric and n̂ is the unit vector
in the direction of E. We know P · (−n̂) is the polarization charge surface
density formed adjacent to the plate bearing the (positive) charge Q, and
P·n̂ is the polarization charge surface density formed adjacent to the plate
bearing the charge −Q. Since P = (ε−ε0)E, we have P ·(−n̂) = (ε0−ε)E
and P · n̂ = (ε− ε0)E which the first is negative and the second is positive
obviously. Then, the electrostatic field arising from these (polarization)
charges in the dielectric is

EP =
P · n̂
ε0

(−n̂) =
ε0 − ε

ε0
E (32)

and since D = εE we have EP = (ε0 − ε)/(ε0ε)D. Combining this result
with the relation (31) yields

D = εEQ +
ε0 − ε

ε0
D ⇒ D = ε0EQ. (33)
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Therefore, we have

U =
1

2

∫
Vh

D·EQdv =
1

2

∫
V =Ad

ε0E
2
Qdv =

1

2
ε0AdE2

Q =
1

2
ε0Ad((∆φ)Q/d)2

=
1

2
(ε0A/d)(∆φ)2Q,

which is the same result obtained in the first method.

Now we proceed to another case. Consider the figure. The (unindi-
cated) width of the plates is w. A linear dielectric block is along the
l-dimension and only the length x is between the plates. Potential dif-
ference between the two plates is constant (equal to (∆φ)Q; we proved
this fact beforehand). It is clear that the charges on that part of a plate
of the capacitor which is in the empty part of the capacitor exert an at-
tractive force on the polarization charges adjacent to that plate and a
repulsive force on the polarization charges adjacent to the other plate,
while the charges on the empty part of the other plate act a similar work,
and the resultant force of all of these forces is an inward force along the
l-dimension magnitude of which must approach zero when d approaches
zero. Now let’s try to obtain this force from the energy method. First
of all, according to what said so far, it is obvious that with the dielec-
tric displacement the electrostatic potential energy of the capacitor being
only of the capacitor charge (Q and −Q) does not alter. Thus, only the
electrostatic potential energy of the dielectric and its alteration must be
considered.

We know that the surface density of polarization charge of the dielec-
tric in the capacitor is +P or −P and then the electrostatic field arising
from it is EP = −P/ε0. On the other hand, by using each of the relations
(1) and (2) we obtain a unique expression for the electrostatic potential
energy of only the polarization charges of the dielectric:

(1) =⇒ UP =
1

2

∫
Vh

ρφdv =
1

2
((−Pd

2ε0
+ 0)(−QP) + (−−Pd

2ε0
+ 0)(QP))

=
Pd

2ε0
QP =

Pd

2ε0
P (wx) =

P 2d

2ε0
wx

considering that the potential arising from an infinite charged plate with
the surface charge density σ is −σ/(2ε0)d at the (nonnegative) distance d
from the plate, and

(2) =⇒ UP =
1

2

∫
Vh

ε0EP ·EPdv =
ε0
2

∫
Vh

E2
Pdv =

ε0
2

∫
Vh

(
P

ε0
)2dv

=
ε0
2

P 2

ε20
wxd =

P 2d

2ε0
wx.

We have also P = −ε0EP from EP = −P/ε0. If in addition we apply the
relations (32), (33) and (31), we shall obtain

P = −ε0EP = (ε− ε0)E = (ε0(ε− ε0)/ε)EQ
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and consequently

UP =
P 2d

2ε0
wx =

ε0E
2
Pd

2
wx =

(ε− ε0)
2E2d

2ε0
wx =

ε0(ε− ε0)
2E2

Qd

2ε2
wx.

Since with displacement of the dielectric only x is changed,

dUP =
ε0E

2
Pd

2
wdx =

(ε− ε0)
2E2d

2ε0
wdx =

ε0(ε− ε0)
2E2

Qd

2ε2
wdx. (34)

We know that the above-mentioned force pulling the dielectric into the
capacitor performs some work on the dielectric which, according to the
conservation law of energy, this work must be conserved in some manner.
By pulling inward, this force not only causes forming more polarization
charges, but also alters (and in fact increases) the kinetic energy of the
dielectric block. Thus, the above mentioned work is conserved both as
the electrostatic potential energy of the formed polarization charges and
as the alteration of the kinetic energy. We show this work as dW and the
alteration of the electrostatic potential energy as dUP and the alteration
of the kinetic energy as dT. Therefore, we have:

dW = dUP + dT}⇒ Fxdx = dUP + dTdW = Fxdx }⇒ Fxdx = ε0(ε−ε0)2wd

2ε2
E2

Qdx + dT(34)

=
ε0(ε− ε0)

2

2ε2
w

(∆φ)2Q
d

dx + dT. (35)

It is obvious that if in an especial case we have dT = 0 then we shall have

Fx =
ε0(ε− ε0)

2

2ε2
E2

Qwd =
ε0(ε− ε0)

2

2ε2
w

(∆φ)2Q
d

. (36)

(It is seen that as was predicted beforehand, this force will approach zero
if d approaches zero.)

Observing the present current mistakes (including what we saw about
the capacitance and electrostatic potential energy of a capacitor) we see
the following relation instead of Eq. (35) in the present books of Electricity
and Magnetism or Electromagnetism:

Fxdx =
1

2
(ε− ε0)w

(∆φ)2Q
d

dx =
1

2
(K − 1)ε0E

2
Q(wd)dx (37)

where it is supposed that (∆φ)Q remains constant. (How? I don’t know(!)
because even by connecting the two plates to a battery the voltage of the
battery is equal to the sum of (∆φ)Q and the potential difference caused
by the dielectric (also see the beginning part of Section 3.4).)

And also by mistake the following general result (instead of the especial
result (36)) is inferred from the relation (37):

Fx =
1

2
(ε− ε0)w

(∆φ)2Q
d

=
1

2
(K − 1)ε0E

2
Qwd
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Practical comparison of the above relations for experimental testing of
the truth of Eq. (35) should be possible by preparing ideal conditions and
regarding fringing effects at the edges of the capacitor and considering the
real value of K (see Note section in the previous section).
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