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Preface

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours
to print out the predictions of this kind of unified theory as an article in the desired format. TGD
is something different and I am not ashamed to confess that I have devoted the last 37 years of
my life to this enterprise and am still unable to write The Rules.

If T remember correctly, I got the basic idea of Topological Geometrodynamics (TGD) during
autumn 1977, perhaps it was October. What I realized was that the representability of physical
space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing
the points of Minkowski space with some very small compact internal space could resolve the con-
ceptual difficulties of general relativity related to the definition of the notion of energy. This belief
was too optimistic and only with the advent of what I call zero energy ontology the understanding
of the notion of Poincare invariance has become satisfactory. This required also the understanding
of the relationship to General Relativity.

It soon became clear that the approach leads to a generalization of the notion of space-time
with particles being represented by space-time surfaces with finite size so that TGD could be also
seen as a generalization of the string model. Much later it became clear that this generalization is
consistent with conformal invariance only if space-time is 4-dimensional and the Minkowski space
factor of imbedding space is 4-dimensional. During last year it became clear that 4-D Minkowski
space and 4-D complex projective space C'P, are completely unique in the sense that they allow
twistor space with Kéhler structure.

It took some time to discover that also the geometrization of also gauge interactions and
elementary particle quantum numbers could be possible in this framework: it took two years to
find the unique internal space (C'P;) providing this geometrization involving also the realization
that family replication phenomenon for fermions has a natural topological explanation in TGD
framework and that the symmetries of the standard model symmetries are much more profound
than pragmatic TOE builders have believed them to be. If TGD is correct, main stream particle
physics chose the wrong track leading to the recent deep crisis when people decided that quarks
and leptons belong to same multiplet of the gauge group implying instability of proton.

There have been also longstanding problems.

e Gravitational energy is well-defined in cosmological models but is not conserved. Hence
the conservation of the inertial energy does not seem to be consistent with the Equivalence
Principle. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to
be vacuum extremals with respect to the inertial energy. About 25 years was needed to
realize that the sign of the inertial energy can be also negative and in cosmological scales the
density of inertial energy vanishes: physically acceptable universes are creatable from vacuum.
Eventually this led to the notion of zero energy ontology (ZEO) which deviates dramatically
from the standard ontology being however consistent with the crossing symmetry of quantum
field theories. In this framework the quantum numbers are assigned with zero energy states
located at the boundaries of so called causal diamonds defined as intersections of future and
past directed light-cones. The notion of energy-momentum becomes length scale dependent
since one has a scale hierarchy for causal diamonds. This allows to understand the non-
conservation of energy as apparent.

Equivalence Principle as it is expressed by Einstein’s equations follows from Poincare invari-
ance once it is realized that GRT space-time is obtained from the many-sheeted space-time of
TGD by lumping together the space-time sheets to a regionof Minkowski space and endowing
it with an effective metric given as a sum of Minkowski metric and deviations of the metrices
of space-time sheets from Minkowski metric. Similar description relates classical gauge po-
tentials identified as components of induced spinor connection to Yang-Mills gauge potentials
in GRT space-time. Various topological inhomogenities below resolution scale identified as
particles are described using energy momentum tensor and gauge currents.
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e From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical
electromagnetic fields.

It took about 26 years to gain the maturity to admit the obvious: these fields are classical
correlates for long range color and weak interactions assignable to dark matter. The only
possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy of fractal
copies of standard model physics. Also the understanding of electro-weak massivation and
screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution
of the problem and provides also surprisingly powerful insights to the mathematical structure
of quantum TGD.

The latest development was the realization that the well- definedness of electromagnetic
charge as quantum number for the modes of the induced spinors field requires that the C' Py
projection of the region in which they are non-vanishing carries vanishing W boson field and
is 2-D. This implies in the generic case their localization to 2-D surfaces: string world sheets
and possibly also partonic 2-surfaces. This localization applies to all modes except covariantly
constant right handed neutrino generating supersymmetry and mplies that string model in
4-D space-time is part of TGD. Localization is possible only for Kahler-Dirac assigned with
Kéhler action defining the dynamics of space-time surfaces. One must however leave open the
question whether W field might vanish for the space-time of GRT if related to many-sheeted
space-time in the proposed manner even when they do not vanish for space-time sheets.

I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be
enough to construct the quantum theory but the first discovery made already during first year of
TGD was that these formalisms might be useless due to the extreme non-linearity and enormous
vacuum degeneracy of the theory. This turned out to be the case.

e It took some years to discover that the only working approach is based on the generalization of
Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
"world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and in positive energyontology implies that space-time surfaces are
analogous to Bohr orbits. This in positive energy ontology in which space-like 3-surface is
basic object. It is not clear whether Bohr orbitology is necessary also in ZEO in which space-
time surfaces connect space-like 3-surfaces at the light-like boundaries of causal diamond CD
obtained as intersection of future and past directed light-cones (with C'P, factor included).
The reason is that the pair of 3-surfaces replaces the boundary conditions at single 3-surface
involving also time derivatives. If one assumes Bohr orbitology then strong correlations
between the 3-surfaces at the ends of CD follow. Still a couple of years and I discovered that
quantum states of the Universe can be identified as classical spinor fields in WCW. Only
quantum jump remains the genuinely quantal aspect of quantum physics.

e During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with
sheets representing physical subsystems of various sizes. At the beginning of 90s I became
dimly aware of the importance of p-adic number fields and soon ended up with the idea that
p-adic thermodynamics for a conformally invariant system allows to understand elementary
particle massivation with amazingly few input assumptions. The attempts to understand p-
adicity from basic principles led gradually to the vision about physics as a generalized number
theory as an approach complementary to the physics as an infinite-dimensional spinor ge-
ometry of WCW approach. One of its elements was a generalization of the number concept
obtained by fusing real numbers and various p-adic numbers along common rationals. The
number theoretical trinity involves besides p-adic number fields also quaternions and octo-
nions and the notion of infinite prime.

e TGD inspired theory of consciousness entered the scheme after 1995 as I started to write
a book about consciousness. Gradually it became difficult to say where physics ends and



consciousness theory begins since consciousness theory could be seen as a generalization of
quantum measurement theory by identifying quantum jump as a moment of consciousness
and by replacing the observer with the notion of self identified as a system which is conscious
as long as it can avoid entanglement with environment. The somewhat cryptic statement
?Everything is conscious and consciousness can be only lost” summarizes the basic philosophy
neatly.

The idea about p-adic physics as physics of cognition and intentionality emerged also rather
naturally and implies perhaps the most dramatic generalization of the space-time concept in
which most points of p-adic space-time sheets are infinite in real sense and the projection
to the real imbedding space consists of discrete set of points. One of the most fascinating
outcomes was the observation that the entropy based on p-adic norm can be negative. This
observation led to the vision that life can be regarded as something in the intersection of real
and p-adic worlds. Negentropic entanglement has interpretation as a correlate for various
positively colored aspects of conscious experience and means also the possibility of strongly
correlated states stable under state function reduction and different from the conventional
bound states and perhaps playing key role in the energy metabolism of living matter.

If one requires consistency of Negentropy Mazimization Pronciple with standard measure-
ment theory, negentropic entanglement defined in terms of number theoretic negentropy is
necessarily associated with a density matrix proportional to unit matrix and is maximal and
is characterized by the dimension n of the unit matrix. Negentropy is positive and maximal
for a p-adic unique prime dividing n.

One of the latest threads in the evolution of ideas is not more than nine years old. Learning
about the paper of Laurent Nottale about the possibility to identify planetary orbits as Bohr
orbits with a gigantic value of gravitational Planck constant made once again possible to see
the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions
can have arbitrarily large sizes. Second motivation for the hierarchy of Planck constants
comes from bio-electromagnetism suggesting that in living systems Planck constant could
have large values making macroscopic quantum coherence possible. The interpretation of
dark matter as a hierarchy of phases of ordinary matter characterized by the value of Planck
constant is very natural.

During summer 2010 several new insights about the mathematical structure and interpreta-
tion of TGD emerged. One of these insights was the realization that the postulated hierarchy
of Planck constants might follow from the basic structure of quantum TGD. The point is that
due to the extreme non-linearity of the classical action principle the correspondence between
canonical momentum densities and time derivatives of the imbedding space coordinates is
one-to-many and the natural description of the situation is in terms of local singular covering
spaces of the imbedding space. One could speak about effective value of Planck constant
heff = n X h coming as a multiple of minimal value of Planck constant. Quite recently it
became clear that the non-determinism of Kéahler action is indeed the fundamental justifi-
cation for the hierarchy: the integer n can be also interpreted as the integer characterizing
the dimension of unit matrix characterizing negentropic entanglement made possible by the
many-sheeted character of the space-time surface.

Due to conformal invariance acting as gauge symmetry the n degenerate space-time sheets
must be replaced with conformal equivalence classes of space-time sheets and conformal
transformations correspond to quantum critical deformations leaving the ends of space-time
surfaces invariant. Conformal invariance would be broken: only the sub-algebra for which
conformal weights are divisible by n act as gauge symmetries. Thus deep connections be-
tween conformal invariance related to quantum criticality, hierarchy of Planck constants,
negentropic entanglement, effective p-adic topology, and non-determinism of Kéahler action
perhaps reflecting p-adic non-determinism emerges.

The implications of the hierarchy of Planck constants are extremely far reaching so that the
significance of the reduction of this hierarchy to the basic mathematical structure distin-
guishing between TGD and competing theories cannot be under-estimated.
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From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious
taking into account how far reaching re-structuring and generalization of the basic mathematical
structure of quantum physics is required. It has indeed turned out that the dream about explicit
formula is unrealistic before one has understood what happens in quantum jump. Symmetries
and general physical principles have turned out to be the proper guide line here. To give some
impressions about what is required some highlights are in order.

e With the emergence of ZEO the notion of S-matrix was replaced with M-matrix defined
between positive and negative energy parts of zero energy states. M-matrix can be interpreted
as a complex square root of density matrix representable as a diagonal and positive square
root of density matrix and unitary S-matrix so that quantum theory in ZEO can be said to
define a square root of thermodynamics at least formally. M-matrices in turn bombine to
form the rows of unitary U-matrix defined between zero energy states.

e A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces
at which the induced metric of space-time surfaces changes its signature and in terms of
space-like 3-surfaces are equivalent. This means effective 2-dimensionality in the sense that
partonic 2-surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent
space data at partonic 2-surfaces code for the physics. Quantum classical correspondence
requires the coding of the quantum numbers characterizing quantum states assigned to the
partonic 2-surfaces to the geometry of space-time surface. This is achieved by adding to the
modified Dirac action a measurement interaction term assigned with light-like 3-surfaces.

e The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further gen-
eralization of these symmetries to non-local Yangian symmetries generalizing the recently
discovered Yangian symmetry of N’ = 4 supersymmetric Yang-Mills theories is highly sug-
gestive. Here the replacement of point like particles with partonic 2-surfaces means the
replacement of conformal symmetry of Minkowski space with infinite-dimensional super-
conformal algebras. Yangian symmetry provides also a further refinement to the notion of
conserved quantum numbers allowing to define them for bound states using non-local energy
conserved currents.

e A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kéhler action for the preferred extremals defining WCW
Kahler function reduces to a 3-D boundary term. This takes place if the conserved currents
are so called Beltrami fields with the defining property that the coordinates associated with
flow lines extend to single global coordinate variable. This ansatz together with the weak
form of electric-magnetic duality reduces the Kéhler action to Chern-Simons term with the
condition that the 3-surfaces are extremals of Chern-Simons action subject to the constraint
force defined by the weak form of electric magnetic duality. It is the latter constraint which
prevents the trivialization of the theory to a topological quantum field theory. Also the
identification of the Kéhler function of WCW as Dirac determinant finds support as well as
the description of the scattering amplitudes in terms of braids with interpretation in terms of
finite measurement resolution coded to the basic structure of the solutions of field equations.

e In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual
particles are taken only as a convenient mathematical tool in quantum field theories. QFT
approach is however plagued by UV and IR divergences and one must keep mind open for
the possibility that a genuine progress might mean opening of the black box of the virtual
particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably.
Light-like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D
partonic 2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like
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”wormhole throats” suggests that virtual particle do not differ from on mass shell particles
only in that the four- and three- momenta of wormhole throats fail to be parallel. The two
throats of the wormhole contact defining virtual particle would contact carry on mass shell
quantum numbers but for virtual particles the four-momenta need not be parallel and can
also have opposite signs of energy.

The localization of the nodes of induced spinor fields to 2-D string world sheets (and possibly
also to partonic 2-surfaces) implies a stringy formulation of the theory analogous to stringy
variant of twistor formalism with string world sheets having interpretation as 2-braids. In
TGD framework fermionic variant of twistor Grassmann formalism leads to a stringy variant
of twistor diagrammatics in which basic fermions can be said to be on mass-shell but carry
non-physical helicities in the internal lines. This suggests the generalization of the Yangian
symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD. This
vision is single man’s view and doomed to contain unrealistic elements as I know from experience.
My dream is that young critical readers could take this vision seriously enough to try to demonstrate
that some of its basic premises are wrong or to develop an alternative based on these or better
premises. I must be however honest and tell that 32 years of TGD is a really vast bundle of
thoughts and quite a challenge for anyone who is not able to cheat himself by taking the attitude
of a blind believer or a light-hearted debunker trusting on the power of easy rhetoric tricks.

Matti Pitkdnen

Hanko,
September 16, 2014
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Chapter 1

Introduction

1.1 Basic Ideas of Topological Geometrodynamics (TGD)

Standard model describes rather successfully both electroweak and strong interactions but sees
them as totally separate and contains a large number of parameters which it is not able to predict.
For about four decades ago unified theories known as Grand Unified Theories (GUTSs) trying to
understand electroweak interactions and strong interactions as aspects of the same fundamental
gauge interaction assignable to a larger symmetry group emerged. Later superstring models trying
to unify even gravitation and strong and weak interactions emerged. The shortcomings of both
GUTs and superstring models are now well-known. If TGD - whose basic idea emerged 37 years
ago - would emerge now it would be seen as an attempt trying to solve the difficulties of these
approaches to unification.

The basic physical picture behind TGD corresponds to a fusion of two rather disparate ap-
proaches: namely TGD as a Poincare invariant theory of gravitation and TGD as a generalization
of the old-fashioned string model. The CMAP files at my homepage provide an overview about
ideas and evolution of TGD and make easier to understand what TGD and its applications are
about (http://www.tgdtheory.fi/cmaphtml.html [L9]).

1.1.1 Basic vision very briefly

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description of
basic interactions. The development of the basic ideas of TGD to a relatively stable form took
time of about half decade [K2].

The basic vision and its relationship to existing theories is now rather well understood.

1. Space-times are representable as 4-surfaces in the 8-dimensional imbedding space H = M* x
CP,, where M* is 4-dimensional (4-D) Minkowski space and CP, is 4-D complex projective
space (see Appendix).

2. Induction procedure allows to geometrize various fields. Space-time metric characterizing
gravitational fields corresponds to the induced metric obtained by projecting the metric tensor
of H to the space-time surface. Electroweak gauge potentials are identified as projections
of the components of C'P, spinor connection to the space-time surface, and color gauge
potentials as projections ofC'P, Killing vector fields representing color symmetries. Also
spinor structure can be induced: induced spinor gamma matrices are projections of gamma
matrices of H and induced spinor fields just H spinor fields restricted to space-time surface.

3. Geometrization of quantum numbers is achieved. The isometry group of the geometry of
CP, codes for the color gauge symmetries of strong interactions. Vierbein group codes
for electroweak symmetries, and explains their breaking in terms of C'P, geometry so that
standard model gauge group results. There are also important deviations from standard
model: color quantum numbers are not spin-like but analogous to orbital angular momentum:
this difference is expected to be seen only in C'P; scale. In contrast to GUTSs, quark and
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lepton numbers are separately conserved and family replication has a topological explanation
in terms of topology of the partonic 2-surface carrying fermionic quantum numbers.

M* and CP, are unique choices for many other reasons. For instance, they are the unique 4-
D space-times allowing twistor space with Kéhler structure. M* light-cone boundary allows
a huge extension of 2-D conformal symmetries. Imbedding space H has a number theoretic
interpretation as 8-D space allowing octonionic tangent space structure. M* and CP, al-
low quaternionic structures. Therefore standard model symmetries have number theoretic
meaning.

4. Induced gauge potentials are expressible in terms of imbedding space coordinates and their
gradients and general coordinate invariance implies that there are only 4 field like variables
locally. Situation is thus extremely simple mathematically. The objection is that one loses
linear superposition of fields. The resolution of the problem comes from the generalization
of the concepts of particle and space-time.

Space-time surfaces can be also particle like having thus finite size. In particular, space-time
regions with Euclidian signature of the induced metric (temporal and spatial dimensions in
the same role) emerge and have interpretation as lines of generalized Feynman diagrams.
Particle in space-time can be identified as a topological inhomogenuity in background space-
time surface which looks like the space-time of general relativity in long length scales.

One ends up with a generalization of space-time surface to many-sheeted space-time with
space-time sheets having extremely small distance of about 10* Planck lengths (C'P, size).
As one adds a particle to this kind of structure, it touches various space-time sheets and
thus interacts with the associated classical fields. Their effects superpose linearly in good
approximation and linear superposition of fields is replaced with that for their effects.

This resolves the basic objection. It also leads to the understanding of how the space-time
of general relativity and quantum field theories emerges from TGD space-time as effective
space-time when the sheets of many-sheeted space-time are lumped together to form a re-
gion of Minkowski space with metric replaced with a metric identified as the sum of empty
Minkowski metric and deviations of the metrics of sheets from empty Minkowski metric.
Gauge potentials are identified as sums of the induced gauge potentials. TGD is therefore
a microscopic theory from which standard model and general relativity follow as a topolog-
ical simplification however forcing to increase dramatically the number of fundamental field
variables.

5. A further objection is that classical weak fields identified as induced gauge fields are long
ranged and should cause large parity breaking effects due to weak interactions. These effects
are indeed observed but only in living matter. The resolution of problem is implied by
the condition that the modes of the induced spinor fields have well-defined electromagnetic
charge. This forces their localization to 2-D string world sheets in the generic case having
vanishing weak gauge fields so that parity breaking effects emerge just as they do in standard
model. Also string model like picture emerges from TGD and one ends up with a rather
concrete view about generalized Feynman diagrammatics.

The great challenge is to construct a mathematical theory around these physically very attrac-
tive ideas and I have devoted the last thirty seven years for the realization of this dream and this
has resulted in eight online books about TGD and nine online books about TGD inspired theory
of consciousness and of quantum biology.

1.1.2 Two manners to see TGD and their fusion

As already mentioned, TGD can be interpreted both as a modification of general relativity and
generalization of string models.

TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure,
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is regarded as a surface in the 8-dimensional space H = M3:CP,, where M* denotes Minkowski
space and CP, = SU(3)/U(2) is the complex projective space of two complex dimensions [A61,
A51, A58, A49].

The identification of the space-time as a sub-manifold [A47, A60] of M* x CP; leads to an
exact Poincare invariance and solves the conceptual difficulties related to the definition of the
energy-momentum in General Relativity.

It soon however turned out that sub-manifold geometry, being considerably richer in structure
than the abstract manifold geometry, leads to a geometrization of all basic interactions. First,
the geometrization of the elementary particle quantum numbers is achieved. The geometry of
C P explains electro-weak and color quantum numbers. The different H-chiralities of H-spinors
correspond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field
concept results. The projections of the C'P spinor connection, Killing vector fields of C'P, and of
H-metric to four-surface define classical electro-weak, color gauge fields and metric in X4.

The choice of H is unique from the condition that TGD has standard model symmetries. Also
number theoretical vision selects H = M* x C' P, uniquely. M* and CP;, are also unique spaces
allowing twistor space with Kéhler structure.

TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons
as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-
surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons
in the sense that the quantum numbers of the elementary particles reside on the boundaries.
Various boundary topologies (number of handles) correspond to various fermion families so that
one obtains an explanation for the known elementary particle quantum numbers. This approach
leads also to a natural topological description of the particle reactions as topology changes: for
instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of
string models. Indeed, the important difference between TGD and string models is that the analogs
of string world sheet diagrams do not describe particle decays but the propagation of particles via
different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D
light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds
the space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

Fusion of the two approaches via a generalization of the space-time concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial
3-space of General Relativity is replaced with a ”topological condensate” containing matter as
particle like 3-surfaces ”glued” to the topologically trivial background 3-space by connected sum
operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the
”topological condensate” there could be ”vapor phase” that is a "gas” of particle like 3-surfaces
and string like objects (counterpart of the ”baby universes” of GRT) and the non-conservation of
energy in GRT corresponds to the transfer of energy between different sheets of the space-time
and possibly existence vapour phase.

What one obtains is what I have christened as many-sheeted space-time (see fig. http://
www.tgdtheory.fi/appfigures/manysheeted. jpg or fig. 9 in the appendix of this book). One
particular aspect is topological field quantization meaning that various classical fields assignable to
a physical system correspond to space-time sheets representing the classical fields to that particular
system. One can speak of the field body of a particular physical system. Field body consists of
topological light rays, and electric and magnetic flux quanta. In Maxwell’s theory system does not
possess this kind of field identity. The notion of magnetic body is one of the key players in TGD
inspired theory of consciousness and quantum biology.

This picture became more detailed with the advent of zero energy ontology (ZEO). The basic
notion of ZEO is causal diamond (CD) identified as the Cartesian product of CP, and of the
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intersection of future and past directed light-cones and having scale coming as an integer multiple
of C'P; size is fundamental. CDs form a fractal hierarchy and zero energy states decompose to
products of positive and negative energy parts assignable to the opposite boundaries of CD defining
the ends of the space-time surface. The counterpart of zero energy state in positive energy ontology
is the pair of initial and final states of a physical event, say particle reaction.

At space-time level ZEO means that 3-surfaces are pairs of space-like 3-surfaces at the opposite
light-like boundaries of CD. Since the extremals of Ké&hler action connect these, one can say that
by holography the basic dynamical objects are the space-time surface connecting these 3-surfaces.
This changes totally the vision about notions like self-organization: self-organization by quantum
jumps does not take for a 3-D system but for the entire 4-D field pattern associated with it.

General Coordinate Invariance (GCI) allows to identify the basic dynamical objects as space-
like 3-surfaces at the ends of space-time surface at boundaries of CD: this means that space-
time surface is analogous to Bohr orbit. An alternative identification is as light-like 3-surfaces at
which the signature of the induced metric changes from Minkowskian to Euclidian and interpreted
as lines of generalized Feynman diagrams. Also the Euclidian 4-D regions would have similar
interpretation. The requirement that the two interpretations are equivalent, leads to a strong
form of General Coordinate Invariance. The outcome is effective 2-dimensionality stating that
the partonic 2-surfaces identified as intersections of the space-like ends of space-time surface and
light-like wormhole throats are the fundamental objects. That only effective 2-dimensionality is in
question is due to the effects caused by the failure of strict determinism of Kéhler action. In finite
length scale resolution these effects can be neglected below UV cutoff and above IR cutoff. One
can also speak about strong form of holography.

1.1.3 Basic objections

Objections are the most powerful tool in theory building. The strongest objection against TGD
is the observation that all classical gauge fields are expressible in terms of four imbedding space
coordinates only- essentially C' P, coordinates. The linear superposition of classical gauge fields
taking place independently for all gauge fields is lost. This would be a catastrophe without many-
sheeted space-time. Instead of gauge fields, only the effects such as gauge forces are superposed.
Particle topologically condenses to several space-time sheets simultaneously and experiences the
sum of gauge forces. This transforms the weakness to extreme economy: in a typical unified theory
the number of primary field variables is countered in hundreds if not thousands, now it is just four.

Second objection is that TGD space-time is quite too simple as compared to GRT space-
time due to the imbeddability to 8-D imbedding space. One can also argue that Poincare invariant
theory of gravitation cannot be consistent with General Relativity. The above interpretation allows
to understand the relationship to GRT space-time and how Equivalence Principle (EP) follows
from Poincare invariance of TGD. The interpretation of GRT space-time is as effective space-
time obtained by replacing many-sheeted space-time with Minkowski space with effective metric
determined as a sum of Minkowski metric and sum over the deviations of the induced metrices of
space-time sheets from Minkowski metric. Poincare invariance suggests strongly classical EP for
the GRT limit in long length scales at least. One can consider also other kinds of limits such as the
analog of GRT limit for Euclidian space-time regions assignable to elementary particles. In this case
deformations of C' P, metric define a natural starting point and C'P; indeed defines a gravitational
instanton with very large cosmological constant in Einstein-Maxwell theory. Also gauge potentials
of standard model correspond classically to superpositions of induced gauge potentials over space-
time sheets.

Topological field quantization

Topological field quantization distinguishes between TGD based and more standard - say Maxwellian
- notion of field. In Maxwell’s fields created by separate systems superpose and one cannot tell
which part of field comes from which system except theoretically. In TGD these fields correspond
to different space-time sheets and only their effects on test particle superpose. Hence physical
systems have well-defined field identifies - field bodies - in particular magnetic bodies.

The notion of magnetic body carrying dark matter with non-standard large value of Planck
constant has become central concept in TGD inspired theory of consciousness and living matter,
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and by starting from various anomalies of biology one ends up to a rather detailed view about the
role of magnetic body as intentional agent receiving sensory input from the biological body and
controlling it using EEG and its various scaled up variants as a communication tool. Among other
thins this leads to models for cell membrane, nerve pulse, and EEG.

1.1.4 p-Adic variants of space-time surfaces

There is a further generalization of the space-time concept inspired by p-adic physics forcing a
generalization of the number concept through the fusion of real numbers and various p-adic number
fields. Also the hierarchy of Planck constants forces a generalization of the notion of space-time
but this generalization can be understood in terms of the failure of strict determinism for Kéahler
action defining the fundamental variational principle behind the dynamics of space-time surfaces.

A very concise manner to express how TGD differs from Special and General Relativities
could be following. Relativity Principle (Poincare Invariance), General Coordinate Invariance, and
Equivalence Principle remain true. What is new is the notion of sub-manifold geometry: this allows
to realize Poincare Invariance and geometrize gravitation simultaneously. This notion also allows
a geometrization of known fundamental interactions and is an essential element of all applications
of TGD ranging from Planck length to cosmological scales. Sub-manifold geometry is also crucial
in the applications of TGD to biology and consciousness theory.

1.1.5 The threads in the development of quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants
interpreted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the
following these threads are briefly described.

The theoretical framework involves several threads.

1. Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-
dimensional WCW, p-adic numbers and quantum TGD, and TGD inspired theory of con-
sciousness and of quantum biology have been for last decade of the second millenium the
basic three strongly interacting threads in the tapestry of quantum TGD.

2. The discussions with Tony Smith initiated a fourth thread which deserves the name "TGD as
a generalized number theory’. The basic observation was that classical number fields might
allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation,
but a deep generalization of quantum TGD. This led to a thorough and extremely fruitful
revision of the basic views about what the final form and physical content of quantum TGD
might be. Together with the vision about the fusion of p-adic and real physics to a larger
coherent structure these sub-threads fused to the ”physics as generalized number theory”
thread.

3. A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is
not at all clear whether standard quantum mechanics can accommodate this hierarchy, and
that a dynamical quantized Planck constant might be necessary and strongly suggested by
the failure of strict determinism for the fundamental variational principle. The identification
of hierarchy of Planck constants labelling phases of dark matter would be natural. This also
led to a solution of a long standing puzzle: what is the proper interpretation of the predicted
fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum clas-
sical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled
up variants of standard model physics and for each of them also dark hierarchy. Thus TGD
Universe would be fractal in very abstract and deep sense.

The chronology based identification of the threads is quite natural but not logical and it is
much more logical to see p-adic physics, the ideas related to classical number fields, and infinite



6 Chapter 1. Introduction

primes as sub-threads of a thread which might be called ”physics as a generalized number theory”.
In the following I adopt this view. This reduces the number of threads to four.

TGD forces the generalization of physics to a quantum theory of consciousness, and represent
TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics as
physics of cognitive representations. The eight online books [K83, K65, K56, K100, K74, K99,
K98, K71] about TGD and nine online books about TGD inspired theory of consciousness and of
quantum biology [K78, K14, K60, K12, K39, K46, K48, K70, K93] are warmly recommended to
the interested reader.

Quantum TGD as spinor geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was ” Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since
then and have been the following ones:

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrodinger amplitude in the configuration space CH ("world of classical worlds”,WCW)
consisting of all possible 3-surfaces in H. ” All possible” means that surfaces with arbitrary
many disjoint components and with arbitrary internal topology and also singular surfaces
topologically intermediate between two different manifold topologies are included. Particle
reactions are identified as topology changes [A57, A63, A64]. For instance, the decay of a
3-surface to two 3-surfaces corresponds to the decay A — B+ C. Classically this corresponds
to a path of WCW leading from 1-particle sector to 2-particle sector. At quantum level this
corresponds to the dispersion of the generalized Schrodinger amplitude localized to 1-particle
sector to two-particle sector. All coupling constants should result as predictions of the theory
since no nonlinearities are introduced.

2. During years this naive and very rough vision has of course developed a lot and is not
anymore quite equivalent with the original insight. In particular, the space-time correlates of
Feynman graphs have emerged from theory as Euclidian space-time regions and the strong
form of General Coordinate Invariance has led to a rather detailed and in many respects un-
expected visions. This picture forces to give up the idea about smooth space-time surfaces
and replace space-time surface with a generalization of Feynman diagram in which vertices
represent the failure of manifold property. I have also introduced the word ”world of classical
worlds” (WCW) instead of rather formal ”configuration space”. I hope that "WCW” does
not induce despair in the reader having tendency to think about the technicalities involved!

3. WCW is endowed with metric and spinor structure so that one can define various metric
related differential operators, say Dirac operator, appearing in the field equations of the
theory !. The most ambitious dream is that zero energy states correspond to a complete
solution basis for the Dirac operator of WCW so that this classical free field theory would
dictate M-matrices defined between positive and negative energy parts of zero energy states
which form orthonormal rows of what I call U-matrix as a matrix defined between zero energy
states. Given M-matrix in turn would decompose to a product of a hermitian density matrix
and unitary S-matrix.

M-matrix would define time-like entanglement coefficients between positive and negative
energy parts of zero energy states (all net quantum numbers vanish for them) and can be
regarded as a hermitian square root of density matrix multiplied by a unitary S-matrix.
Quantum theory would be in well-defined sense a square root of thermodynamics. The
orthogonality and hermiticity of the complex square roots of density matrices commuting
with S-matrix means that they span infinite-dimensional Lie algebra acting as symmetries of
the S-matrix. Therefore quantum TGD would reduce to group theory in well-defined sense:
its own symmetries would define the symmetries of the theory. In fact the Lie algebra of
Hermitian M-matrices extends to Kac-Moody type algebra obtained by multiplying hermitian

IThere are four kinds of Dirac operators in TGD. WCW Dirac operator appearing in Super-Virasoro conditions,
imbedding space Dirac operator whose modes define the ground states of Super-Virasoro representations, Kéhler-
Dirac operator at space-time surfaces, and the algebraic variant of M* Dirac operator appearing in propagators
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square roots of density matrices with powers of the S-matrix. Also the analog of Yangian
algebra involving only non-negative powers of S-matrix is possible.

4. By quantum classical correspondence the construction of WCW spinor structure reduces to
the second quantization of the induced spinor fields at space-time surface. The basic ac-
tion is so called modified Dirac action (or Kéhler-Dirac action) in which gamma matrices
are replaced with the modified (K&hler-Dirac) gamma matrices defined as contractions of
the canonical momentum currents with the imbedding space gamma matrices. In this man-
ner one achieves super-conformal symmetry and conservation of fermionic currents among
other things and consistent Dirac equation. The modified gamma matrices define as anti-
commutators effective metric, which might provide geometrization for some basic observables
of condensed matter physics. One might also talk about bosonic emergence in accordance
with the prediction that the gauge bosons and graviton are expressible in terms of bound
states of fermion and anti-fermion.

5. An important result relates to the notion of induced spinor connection. If one requires
that spinor modes have well-defined em charge, one must assume that the modes in the
generic situation are localized at 2-D surfaces - string world sheets or perhaps also partonic
2-surfaces - at which classical W boson fields vanish. Covariantly constant right handed
neutrino generating super-symmetries forms an exception. The vanishing of also Z° field is
possible for Kahler-Dirac action and should hold true at least above weak length scales. This
implies that string model in 4-D space-time becomes part of TGD. Without these conditions
classical weak fields can vanish above weak scale only for the GRT limit of TGD for which
gauge potentials are sums over those for space-time sheets.

The localization simplifies enormously the mathematics and one can solve exactly the Kéhler-
Dirac equation for the modes of the induced spinor field just like in super string models.

At the light-like 3-surfaces at which the signature of the induced metric changes from Eu-
clidian to Minkowskian so that /g4 vanishes one can pose the condition that the algebraic
analog of massless Dirac equation is satisfied by the nodes so that Kahler-Dirac action gives
massless Dirac propagator localizable at the boundaries of the string world sheets.

The evolution of these basic ideas has been rather slow but has gradually led to a rather
beautiful vision. One of the key problems has been the definition of K&hler function. Kéhler
function is Ké&hler action for a preferred extremal assignable to a given 3-surface but what this
preferred extremal is? The obvious first guess was as absolute minimum of Ké&hler action but
could not be proven to be right or wrong. One big step in the progress was boosted by the idea
that TGD should reduce to almost topological QFT in which braids would replace 3-surfaces in
finite measurement resolution, which could be inherent property of the theory itself and imply
discretization at partonic 2-surfaces with discrete points carrying fermion number.

1. TGD as almost topological QFT vision suggests that Kéhler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
Euclidian regions would give at wormhole throats the same contribution apart from coeffi-
cients and in Minkowskian regions the /g4 factorc coming from metric would be imaginary
so that one would obtain sum of real term identifiable as Kéhler function and imaginary
term identifiable as the ordinary Minkowskian action giving rise to interference effects and
stationary phase approximation central in both classical and quantum field theory.

Imaginary contribution - the presence of which I realized only after 33 years of TGD - could
also have topological interpretation as a Morse function. On physical side the emergence of
Euclidian space-time regions is something completely new and leads to a dramatic modifica-
tion of the ideas about black hole interior.

2. The manner to achieve the reduction to Chern-Simons terms is simple. The vanishing of
Coulomb contribution to Kahler action is required and is true for all known extremals if one
makes a general ansatz about the form of classical conserved currents. The so called weak
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form of electric-magnetic duality defines a boundary condition reducing the resulting 3-D
terms to Chern-Simons terms. In this manner almost topological QFT results. But only
“almost” since the Lagrange multiplier term forcing electric-magnetic duality implies that
Chern-Simons action for preferred extremals depends on metric.

TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configu-
ration space ("world of classical worldss”, WCW), p-adic numbers and quantum TGD, and TGD
inspired theory of consciousness, have been for last ten years the basic three strongly interacting
threads in the tapestry of quantum TGD. The fourth thread deserves the name 'TGD as a gen-
eralized number theory’. It involves three separate threads: the fusion of real and various p-adic
physics to a single coherent whole by requiring number theoretic universality discussed already, the
formulation of quantum TGD in terms of hyper-counterparts of classical number fields identified
as sub-spaces of complexified classical number fields with Minkowskian signature of the metric
defined by the complexified inner product, and the notion of infinite prime.

1. p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers
might be important for TGD. Experimentation with p-adic numbers led to the notion of canonical
identification mapping reals to p-adics and vice versa. The breakthrough came with the successful
p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the
super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group.
Although the details of the calculations have varied from year to year, it was clear that p-adic
physics reduces not only the ratio of proton and Planck mass, the great mystery number of physics,
but all elementary particle mass scales, to number theory if one assumes that primes near prime
powers of two are in a physically favored position. Why this is the case, became one of the key
puzzles and led to a number of arguments with a common gist: evolution is present already at
the elementary particle level and the primes allowed by the p-adic length scale hypothesis are the
fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length
scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by
p-adic length scales varying to even cosmological length scales. The idea about the connection of
p-adics with cognition motivated already the first attempts to understand the role of the p-adics
and inspired "Universe as Computer’ vision but time was not ripe to develop this idea to anything
concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It
became however obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy
of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the
almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive
representations for real regions had to wait for almost a decade for the access into my consciousness.

In string model context one tries to reduces the physics to Planck scale. The price is the
inability to say anything about physics in long length scales. In TGD p-adic physics takes care of
this shortcoming by predicting the physics also in long length scales.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is
both, how should one glue the physics in different number field together to get the Physics?
Should one perform p-adicization also at the level of the WCW? Certainly the p-adicization
at the level of super-conformal representation is necessary for the p-adic mass calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-
adic definite integral which is a crucial element of any variational principle based formulation
of the field equations. Here the frustration was not due to the lack of solution but due to
the too large number of solutions to the problem, a clear symptom for the sad fact that
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clever inventions rather than real discoveries might be in question. Quite recently I however
learned that the problem of making sense about p-adic integration has been for decades
central problem in the frontier of mathematics and a lot of profound work has been done
along same intuitive lines as I have proceeded in TGD framework. The basic idea is certainly
the notion of algebraic continuation from the world of rationals belonging to the intersection
of real world and various p-adic worlds.

The notion of p-adic manifold [K103] identified as p-adic space-time surface solving p-adic
analogs of field equations and having real space-time sheets as chart maps provides a possible
solution of the basic challenge. One can also speak of real space-time surfaces having p-
adic space-time surfaces as chart maps (cognitive maps, ”thought bubbles”). Discretization
required having interpretation in terms of finite measurement resolution is unavoidable in
this approach.

Despite various uncertainties, the number of the applications of the poorly defined p-adic physics
has grown steadily and the applications turned out to be relatively stable so that it was clear that
the solution to these problems must exist. It became only gradually clear that the solution of the
problems might require going down to a deeper level than that represented by reals and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structures.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of imbedding space and space-time concept
and one can speak about real and p-adic space-time sheets. The quantum dynamics should be such
that it allows quantum transitions transforming space-time sheets belonging to different number
fields to each other. The space-time sheets in the intersection of real and p-adic worlds are of
special interest and the hypothesis is that living matter resides in this intersection. This leads to
surprisingly detailed predictions and far reaching conjectures. For instance, the number theoretic
generalization of entropy concept allows negentropic entanglement central for the applications to
living matter (see fig. http://www.tgdtheory.fi/appfigures/cat. jpg or fig. 21 in the appendix
of this book).

The basic principle is number theoretic universality stating roughly that the physics in various
number fields can be obtained as completion of rational number based physics to various number
fields. Rational number based physics would in turn describe physics in finite measurement resolu-
tion and cognitive resolution. The notion of finite measurement resolution has become one of the
basic principles of quantum TGD and leads to the notions of braids as representatives of 3-surfaces
and inclusions of hyper-finite factors as a representation for finite measurement resolution. The
braids actually co-emerge with string world sheets implied by the condition that em charge is
well-defined for spinor modes.

2. The role of classical number fields

The vision about the physical role of the classical number fields relies on certain speculative
questions inspired by the idea that space-time dynamics could be reduced to associativity or co-
associativity condition. Associativity means here associativity of tangent spaces of space-time
region and co-associativity associativity of normal spaces of space-time region.

1. Could space-time surfaces X* be regarded as associative or co-associative (”quaternionic”
is equivalent with ”associative”) surfaces of H endowed with octonionic structure in the
sense that tangent space of space-time surface would be associative (co-associative with
normal space associative) sub-space of octonions at each point of X* [K77]. This is certainly
possible and an interesting conjecture is that the preferred extremals of Kédhler action include
associative and co-associative space-time regions.

2. Could the notion of compactification generalize to that of number theoretic compactifica-
tion in the sense that one can map associative (co-associative) surfaces of M® regarded as
octonionic linear space to surfaces in M* x CP, [K77]? This conjecture - M® — H duality
- would give for M* x C'P, deep number theoretic meaning. C'P, would parametrize asso-
ciative planes of octonion space containing fixed complex plane M? C M® and CP, point
would thus characterize the tangent space of X* C M#8. The point of M* would be obtained
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by projecting the point of X* C M?® to a point of M* identified as tangent space of X*.
This would guarantee that the dimension of space-time surface in H would be four. The
conjecture is that the preferred extremals of Kéahler action include these surfaces.

3. M®— H duality can be generalized to a duality H — H if the images of the associative surface
in M3 is associative surface in H. One can start from associative surface of H and assume
that it contains the preferred M? tangent plane in 8-D tangent space of H or integrable
distribution M?2(x) of them, and its points to H by mapping M* projection of H point to
itself and associative tangent space to C' P, point. This point need not be the original one! If
the resulting surface is also associative, one can iterate the process indefinitely. WCW would
be a category with one object.

4. (G2 defines the automorphism group of octonions, and one might hope that the maps of
octonions to octonions such that the action of Jacobian in the tangent space of associative
or co-associative surface reduces to that of G could produce new associative/co-associative
surfaces. The action of G5 would be analogous to that of gauge group.

5. One can also ask whether the notions of commutativity and co-commutativity could have
physical meaning. The well-definedness of em charge as quantum number for the modes of
the induced spinor field requires their localization to 2-D surfaces (right-handed neutrino is
an exception) - string world sheets and partonic 2-surfaces. This can be possible only for
Kahler action and could have commutativity and co-commutativity as a number theoretic
counterpart. The basic vision would be that the dynamics of Kéahler action realizes number
theoretical geometrical notions like associativity and commutativity and their co-notions.

The notion of number theoretic compactification stating that space-time surfaces can be re-
garded as surfaces of either M8 or M* x CP,. As surfaces of M?® identifiable as space of hyper-
octonions they are hyper-quaternionic or co-hyper-quaternionic- and thus maximally associative
or co-associative. This means that their tangent space is either hyper-quaternionic plane of M8
or an orthogonal complement of such a plane. These surface can be mapped in natural manner to
surfaces in M* x C' P, [K77] provided one can assign to each point of tangent space a hyper-complex
plane M?(x) € M* C M®. One can also speak about M® — H duality.

This vision has very strong predictive power. It predicts that the preferred extremals of Kahler
action correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that one can
assign to tangent space at each point of space-time surface a hyper-complex plane M?(z) C M*.
As a consequence, the M* projection of space-time surface at each point contains M?(x) and its
orthogonal complement. These distributions are integrable implying that space-time surface allows
dual slicings defined by string world sheets Y2 and partonic 2-surfaces X2. The existence of this
kind of slicing was earlier deduced from the study of extremals of K&hler action and christened as
Hamilton-Jacobi structure. The physical interpretation of M?(x) is as the space of non-physical
polarizations and the plane of local 4-momentum.

Number theoretical compactification has inspired large number of conjectures. This includes
dual formulations of TGD as Minkowskian and Euclidian string model type theories, the precise
identification of preferred extremals of Kéhler action as extremals for which second variation van-
ishes (at least for deformations representing dynamical symmetries) and thus providing space-time
correlate for quantum criticality, the notion of number theoretic braid implied by the basic dynam-
ics of Kéhler action and crucial for precise construction of quantum TGD as almost-topological
QFT, the construction of WCW metric and spinor structure in terms of second quantized induced
spinor fields with modified Dirac action defined by Kahler action realizing the notion of finite
measurement resolution and a connection with inclusions of hyper-finite factors of type II; about
which Clifford algebra of WCW represents an example.

The two most important number theoretic conjectures relate to the preferred extremals of
Kahler action. The general idea is that classical dynamics for the preferred extremals of Kéahler
action should reduce to number theory: space-time surfaces should be either associative or co-
associative in some sense.

Associativity (co-associativity) would be that tangent (normal) spaces of space-time surfaces
associative (co-associative) in some sense and thus quaternionic (co-quaternionic). This can be
formulated in two manners.
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1. One can introduce octonionic tangent space basis by assigning to the ”free” gamma matri-
ces octonion basis or in terms of octonionic representation of the imbedding space gamma
matrices possible in dimension D = 8.

2. Associativity (quaternionicity) would state that the projections of octonionic basic vectors or
induced gamma matrices basis to the space-time surface generates associative (quaternionic)
sub-algebra at each space-time point. Co-associativity is defined in analogous manner and
can be expressed in terms of the components of second fundamental form.

3. For gamma matrix option induced rather than modified gamma matrices must be in question
since modified gamma matrices can span lower than 4-dimensional space and are not parallel
to the space-time surfaces as imbedding space vectors.

3. Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy
defined by a repeatedly second quantized arithmetic quantum field theory gave a further boost for
the speculations about TGD as a generalized number theory.

After the realization that infinite primes can be mapped to polynomials possibly representable
as surfaces geometrically, it was clear how TGD might be formulated as a generalized number theory
with infinite primes forming the bridge between classical and quantum such that real numbers,
p-adic numbers, and various generalizations of p-adics emerge dynamically from algebraic physics
as various completions of the algebraic extensions of rational (hyper-)quaternions and (hyper-
)Joctonions. Complete algebraic, topological and dimensional democracy would characterize the
theory.

What is especially interesting is that p-adic and real regions of the space-time surface might
aso emerge automatically as solutions of the field equations. In the space-time regions where
the solutions of field equations give rise to in-admissible complex values of the imbedding space
coordinates, p-adic solution can exist for some values of the p-adic prime. The characteristic non-
determinism of the p-adic differential equations suggests strongly that p-adic regions correspond to
‘mind stuff’, the regions of space-time where cognitive representations reside. This interpretation
implies that p-adic physics is physics of cognition. Since Nature is probably a brilliant simulator
of Nature, the natural idea is to study the p-adic physics of the cognitive representations to derive
information about the real physics. This view encouraged by TGD inspired theory of consciousness
clarifies difficult interpretational issues and provides a clear interpretation for the predictions of
p-adic physics.

1.1.6 Hierarchy of Planck constants and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence
regions. Hence the fact that they have all possible size scales more or less unavoidably implies that
Planck constant must be quantized and have arbitrarily large values. If one accepts this then also
the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large
value of Planck constant emerges naturally as does also the interpretation for the long ranged
classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas
follows simple linear logic, and this was the case also now. In any case, this vision represents the
fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large h phases

D. Da Rocha and Laurent Nottale [E171] have proposed that Schrédinger equation with Planck
constant h replaced with what might be called gravitational Planck constant Ay, = G’ZZ)M (h=c=
1). wp is a velocity parameter having the value vy = 144.7 + .7 km/s giving vg/c = 4.6 x 107
This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and
harmonics of vy seem to appear. The support for the hypothesis coming from empirical data is
impressive.

Nottale and Da Rocha believe that their Schrodinger equation results from a fractal hydrody-
namics. Many-sheeted space-time however suggests that astrophysical systems are at some levels
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of the hierarchy of space-time sheets macroscopic quantum systems. The space-time sheets in
question would carry dark matter.

Nottale’s hypothesis would predict a gigantic value of hy.. Equivalence Principle and the
independence of gravitational Compton length on mass m implies however that one can restrict
the values of mass m to masses of microscopic objects so that hg, would be much smaller. Large
hgr could provide a solution of the black hole collapse (IR catastrophe) problem encountered at
the classical level. The resolution of the problem inspired by TGD inspired theory of living matter
is that it is the dark matter at larger space-time sheets which is quantum coherent in the required
time scale [K68] .

It is natural to assign the values of Planck constants postulated by Nottale to the space-time
sheets mediating gravitational interaction and identifiable as magnetic flux tubes (quanta) possibly
carrying monopole flux and identifiable as remnants of cosmic string phase of primordial cosmology.
The magnetic energy of these flux quanta would correspond to dark energy and magnetic tension
would give rise to negative ”pressure” forcing accelerate cosmological expansion. This leads to a
rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.

Hierarchy of Planck constants from the anomalies of neuroscience and biology

The quantal ELF effects of ELF em fields on vertebrate brain have been known since seventies.
ELF em fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity
is about 2/5 times that of Earth for biologically important ions have physiological effects and
affect also behavior. What is intriguing that the effects are found only in vertebrates (to my best
knowledge). The energies for the photons of ELF em fields are extremely low - about 10719 times
lower than thermal energy at physiological temperatures- so that quantal effects are impossible
in the framework of standard quantum theory. The values of Planck constant would be in these
situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large a value of Planck constant
that the energy of photons is above the thermal energy. The proposed interpretation was as dark
photons and the general hypothesis was that dark matter corresponds to ordinary matter with non-
standard value of Planck constant. If only particles with the same value of Planck constant can
appear in the same vertex of Feynman diagram, the phases with different value of Planck constant
are dark relative to each other. The phase transitions changing Planck constant can however make
possible interactions between phases with different Planck constant but these interactions do not
manifest themselves in particle physics. Also the interactions mediated by classical fields should
be possible. Dark matter would not be so dark as we have used to believe.

The hypothesis hers = hgr - at least for microscopic particles - implies that cyclotron ener-
gies of charged particles do not depend on the mass of the particle and their spectrum is thus
universal although corresponding frequencies depend on mass. In bio-applications this spectrum
would correspond to the energy spectrum of bio-photons assumed to result from dark photons by
hets reducing phase transition and the energies of bio-photons would be in visible and UV range
associated with the excitations of bio-molecules.

Also the anomalies of biology (see for instance [K61, K62, K91]) support the view that dark
matter might be a key player in living matter.

Does the hierarchy of Planck constants reduce to the vacuum degeneracy of Kahler
action?

This starting point led gradually to the recent picture in which the hierarchy of Planck constants
is postulated to come as integer multiples of the standard value of Planck constant. Given integer
multiple i = nhg of the ordinary Planck constant fig is assigned with a multiple singular covering
of the imbedding space [K30]. One ends up to an identification of dark matter as phases with
non-standard value of Planck constant having geometric interpretation in terms of these coverings
providing generalized imbedding space with a book like structure with pages labelled by Planck
constants or integers characterizing Planck constant. The phase transitions changing the value of
Planck constant would correspond to leakage between different sectors of the extended imbedding
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space. The question is whether these coverings must be postulated separately or whether they are
only a convenient auxiliary tool.

The simplest option is that the hierarchy of coverings of imbedding space is only effective.
Many-sheeted coverings of the imbedding space indeed emerge naturally in TGD framework. The
huge vacuum degeneracy of Kéahler action implies that the relationship between gradients of the
imbedding space coordinates and canonical momentum currents is many-to-one: this was the very
fact forcing to give up all the standard quantization recipes and leading to the idea about physics
as geometry of the ”world of classical worlds”. If one allows space-time surfaces for which all sheets
corresponding to the same values of the canonical momentum currents are present, one obtains
effectively many-sheeted covering of the imbedding space and the contributions from sheets to the
Kahler action are identical. If all sheets are treated effectively as one and the same sheet, the value
of Planck constant is an integer multiple of the ordinary one. A natural boundary condition would
be that at the ends of space-time at future and past boundaries of causal diamond containing the
space-time surface, various branches co-incide. This would raise the ends of space-time surface in
special physical role.

A more precise formulation is in terms of presence of large number of space-time sheets con-
necting given space-like 3-surfaces at the opposite boundaries of causal diamond. Quantum criti-
cality presence of vanishing second variations of Kéahler action and identified in terms of conformal
invariance broken down to to sub-algebras of super-conformal algebras with conformal weights
divisible by integer n is highly suggestive notion and would imply that n sheets of the effective
covering are actually conformal equivalence classes of space-time sheets with same Kéahler action
and same values of conserved classical charges (see fig. http://www.tgdtheory.fi/appfigures/
planckhierarchy. jpg, which is also in the appendix of this book). n would naturally correspond
the value of h.yy and its factors negentropic entanglement with unit density matrix would be be-
tween the n sheets of two coverings of this kind. p-Adic prime would be largest prime power factor
of n.

Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not
however seem to allow long ranged electro-weak gauge fields. The problem disappears if long
range classical electro-weak gauge fields are identified as space-time correlates for massless gauge
fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra
are possible. The identification explains chiral selection in living matter and unbroken U(2)e
invariance and free color in bio length scales become characteristics of living matter and of bio-
chemistry and bio-nuclear physics.

The recent view about the solutions of Kéhler- Dirac action assumes that the modes have a
well-defined em charge and this implies that localization of the modes to 2-D surfaces (right-handed
neutrino is an exception). Classical W boson fields vanish at these surfaces and also classical Z°
field can vanish. The latter would guarantee the absence of large parity breaking effects above
intermediate boson scale scaling like hcyy.

1.2 Bird’s eye of view about the topics of the book

This book is mostly devoted to what might be called classical TGD.

1. In a well-defined sense classical TGD defined as the dynamics of space-time surfaces deter-
mining them as kind of generalized Bohr orbits can be regarded as an exact part of quantum
theory and assuming quantum classical correspondence has served as an extremely valuable
guideline in the attempts to interpret TGD, to form a view about what TGD really predicts,
and to to guess what the underlying quantum theory could be and how it deviates from
standard quantum theory.

2. The notions of many-sheeted space-time, topological field quantization and the notion of
field/magnetic body, follow from simple topological considerations. The observation that
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space-time sheets can have arbitrarily large sizes and their interpretation as quantum co-
herence regions forces to conclude that in TGD Universe macroscopic and macro-temporal
quantum coherence are possible in arbitrarily long scales. Also long ranged classical color
and electro-weak fields are an unavoidable prediction.

3. It took a considerable time to make the obvious conclusion: TGD Universe is fractal contain-
ing fractal copies of standard model physics at various space-time sheets and labeled by the
collection of p-adic primes assignable to elementary particles and by the level of dark matter
hierarchy characterized partially by the value of Planck constant labeling the pages of the
book like structure formed by singular covering spaces of the imbedding space M* x CP,
glued together along a four-dimensional back. Particles at different pages are dark relative to
each other since purely local interactions defined in terms of the vertices of Feynman diagram
involve only particles at the same page.

4. The new view about energy and time justified by the notion of zero energy ontology means
that the sign of inertial energy depends on the time orientation of the space-time sheet
and that negative energy space-time sheets serve as correlates for communications to the
geometric past. This alone leads to profoundly new views about metabolism, long term
memory, and realization of intentional action.

1.2.1 The implications deriving from the topology of space-time surface
and from the properties of induced gauge fields

1. The general properties of Kéhler action, in particular its vacuum degeneracy and failure of
the classical determinism in the conventional sense, have rather far reaching implications.
Space-time surfaces as a generalization of Bohr orbit provide not only a representation of
quantum states but also sequences of quantum jumps and thus contents of consciousness.
Vacuum degeneracy implies spin glass degeneracy in 4-D sense reflecting quantum criticality
which is the fundamental characteristic of TGD Universe.

2. The detailed study of the simplest extremals of Kéahler action interpreted as correlates for
asymptotic self organization patterns provides additional insights [K11] . C'P, type extremals
representing elementary particles, cosmic strings, vacuum extremals, topological light rays
("massless extremal”, ME), flux quanta of magnetic and electric fields represent the basic
extremals. Pairs of wormhole throats identifiable as parton pairs define a completely new
kind of particle carrying only color quantum numbers in ideal case and I have proposed their
interpretation as quantum correlates for Boolean cognition. MEs and flux quanta of magnetic
and electric fields are of special importance in living matter.

This general picture serves as a cornerstone of also TGD inspired view about cosmology and
astrophysics. For obvious reasons the newest ideas developed during last year and still developing
(in particular, the vision about dark matter) are not discussed in full depth yet.

1.2.2 Many-sheeted cosmology

The many-sheeted space-time concept, the new view about the relationship between inertial and
gravitational four-momenta, the basic properties of the paired cosmic strings, the existence of
the limiting temperature, the assumption about the existence of the vapor phase dominated by
cosmic strings, and quantum criticality imply a rather detailed picture of the cosmic evolution,
which differs from that provided by the standard cosmology in several respects but has also strong
resemblances with inflationary scenario.

Basic deviations from standard cosmology
The most important differences between TGD based and standard cosmology are following.

1. Many-sheetedness implies cosmologies inside cosmologies Russian doll like structure with a
spectrum of Hubble constants.
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2. TGD cosmology is also genuinely quantal: each quantum jump in principle recreates each
sub-cosmology in 4-dimensional sense: this makes possible a genuine evolution in cosmological
length scales so that the use of anthropic principle to explain why fundamental constants are
tuned for life is not necessary.

3. The new view about energy means that inertial energy is negative for space-time sheets with
negative time orientation and that the density of inertial energy vanishes in cosmological
length scales. Therefore any cosmology is in principle creatable from vacuum and the problem
of initial values of cosmology disappears. The density of matter near the initial moment is
dominated by cosmic strings approaches to zero so that big bang is transformed to a silent
whisper amplified to a relatively big bang.

4. Dark matter hierarchy with dynamical quantized Planck constant implies the presence of
dark space-time sheets which differ from non-dark ones in that they define multiple coverings
of M*. Quantum coherence of dark matter in the length scale of space-time sheet involved
implies that even in cosmological length scales Universe is more like a living organism than
a thermal soup of particles.

5. Sub-critical and over-critical Robertson-Walker cosmologies are fixed completely from the
imbeddability requirement apart from a single parameter characterizing the duration of the
period after which transition to sub-critical cosmology necessarily occurs. The fluctuations
of the microwave background reflect the quantum criticality of the critical period rather than
amplification of primordial fluctuations by exponential expansion. This and also the finite
size of the space-time sheets predicts deviations from the standard cosmology.

Cosmic strings

Cosmic strings belong to the basic extremals of the K&hler action. The string tension of the cosmic
strings is T ~ .2 x 107%/G and slightly smaller than the string tension of the GUT strings and
this makes them very interesting cosmologically. Concerning the understanding of cosmic strings
a decisive breakthrough came through the identification of gravitational four-momentum as the
difference of inertial momenta associated with matter and antimatter and the realization that the
net inertial energy of the Universe vanishes. This forced to conclude cosmological constant in TGD
Universe is non-vanishing. p-Adic length fractality predicts that A scales as 1/L?(k) as a function of
the p-adic scale characterizing the space-time sheet. The recent value of the cosmological constant
comes out correctly. The gravitational energy density described by the cosmological constant is
identifiable as that associated with topologically condensed cosmic strings and of magnetic flux
tubes to which they are gradually transformed during cosmological evolution.

p-Adic fractality and simple quantitative observations lead to the hypothesis that pairs of cosmic
strings are responsible for the evolution of astrophysical structures in a very wide length scale range.
Large voids with size of order 10® light years can be seen as structures containing knotted and
linked cosmic string pairs wound around the boundaries of the void. Galaxies correspond to same
structure with smaller size and linked around the supra-galactic strings. This conforms with the
finding that galaxies tend to be grouped along linear structures. Simple quantitative estimates
show that even stars and planets could be seen as structures formed around cosmic strings of
appropriate size. Thus Universe could be seen as fractal cosmic necklace consisting of cosmic
strings linked like pearls around longer cosmic strings linked like...

1.2.3 Dark matter and quantization of gravitational Planck constant

The notion of gravitational Planck constant having gigantic value is perhaps the most radical

idea related to the astrophysical applications of TGD. D. Da Rocha and Laurent Nottale have

proposed that Schrodinger equation with Planck constant A replaced with what might be called
_ GmM

gravitational Planck constant Ay, = o (h=c=1). vg is a velocity parameter having the value

vo = 144.7 £ .7 km /s giving vy/c = 4.6 x 10~%. This is rather near to the peak orbital velocity of
stars in galactic halos. Also subharmonics and harmonics of vy seem to appear. The support for
the hypothesis coming from empirical data is impressive.
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Nottale and Da Rocha believe that their Schrodinger equation results from a fractal hydrody-
namics. Many-sheeted space-time however suggests astrophysical systems are not only quantum
systems at larger space-time sheets but correspond to a gigantic value of gravitational Planck con-
stant. The gravitational (ordinary) Schrodinger equation would provide a solution of the black
hole collapse (IR catastrophe) problem encountered at the classical level. The resolution of the
problem inspired by TGD inspired theory of living matter is that it is the dark matter at larger
space-time sheets which is quantum coherent in the required time scale.

TGD predicts correctly the value of the parameter vy assuming that cosmic strings and their
decay remnants are responsible for the dark matter. The harmonics of vy can be understood as
corresponding to perturbations replacing cosmic strings with their n-branched coverings so that
tension becomes n2-fold: much like the replacement of a closed orbit with an orbit closing only
after n turns. 1/n-sub-harmonic would result when a magnetic flux tube split into n disjoint
magnetic flux tubes. An attractive solution of the matter antimatter asymmetry is based on the
identification of also antimatter as dark matter.

1.2.4 The topics of the book

The topics of the book are organized as follows.

1. In the first part of the book extremals of Kéhler action are discussed and the notions of
many-sheeted space-time and topological condensation and evaporation are introduced.

2. In the second part of the book many-sheeted-cosmology and astrophysics are summarized.
Cosmic strings and their deformations are basic objects of TGD inspired cosmology and
are therefore treated in a separate chapter. p-Adic and dark matter hierarchies imply that
TGD inspired cosmology has a kind of Russian doll structure containing cosmologies within
cosmologies. In a chapter about TGD inspired cosmology the imbeddings of Robertson-
Walker cosmology are studied. Both critical and over-critical cosmology are found to be
unique apart from the parameter characterizing its duration.

The idea about dark matter hierarchy with levels labeled by the values of Planck constant
was originally motivated by the observation that planetary orbits could be interpreted as
Bohr orbits with enormous value of Planck constant whose value is fixed to a high degree
by Equivalence Principle. One ends up to a rather detailed view about macroscopically
quantum coherent dark matter in astrophysics and cosmology. In particular, dark matter
could be in anyonic phase at light-like 2-surfaces with complex topology and astrophysical
size and visible matter would condense around it. Dark matter hierarchy allows to interpret
critical cosmologies as correlates for the phase transitions increasing Planck constant and
involving a relatively rapid expansion of space-time sheets. The quantum counterpart of the
smooth cosmological expansion would be a series of phase transitions increasing the value
of Planck constant and these phase transitions are predicted to take place also at planetary
level, which provides a new theoretical basis for Expanding Earth hypothesis and suggests
totally unexpected connections between biology and geology.

3. The third part of the book includes some old chapters about possible implications of TGD for
condensed matter physics written for at least about 15 years ago at least and updated only
slightly. The phases of C' P, complex coordinates could define phases of order parameters of
macroscopic quantum phases so that the deviations of induced gauge field concept from the
standard one could have direct experimental implications visible for instance in the properties
of living matter and even in hydrodynamics. For instance, Z° magnetic gauge field could
make itself visible in hydrodynamics and also Z° magnetic vortices could be involved with
super-fluidity.

1.3 The contents of the book

In the first part of the book extremals of Kéhler action are discussed and the notions of many-
sheeted space-time and topological condensation and evaporation are introduced. In the second
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part many-sheeted-cosmology and astrophysics are summarized. The third part of the book in-
cludes some old chapters about possible implications of TGD for condensed matter physics written
for at least about 15 years ago at least and updated only slightly.

1.4 Sources

The eight online books about TGD [K83, K65, K100, K74, K56, K99, K98, K71] and nine online
books about TGD inspired theory of consciousness and quantum biology [K78, K14, K60, K12,
K39, K46, K48, K70, K93] are warmly recommended for the reader willing to get overall view
about what is involved.

My homepage (http://www.tgdtheory.com/curri.html) contains a lot of material about
TGD. In particular, there is summary about TGD and its applications using CMAP represen-
tation serving also as a TGD glossary [L9, L10] (see http://www.tgdtheory.fi/cmaphtml.html
and http://www.tgdtheory.fi/tgdglossary.pdf).

I have published articles about TGD and its applications to consciousness and living matter
in Journal of Non-Locality (http://journals.sfu.ca/jnonlocality/index.php/jnonlocality
founded by Lian Sidorov and in Prespacetime Journal (http://prespacetime.com), Journal of
Consciousness Research and Exploration (https://www.createspace.com/4185546), and DNA
Decipher Journal (http://dnadecipher.com), all of them founded by Huping Hu. One can find
the list about the articles published at http://www.tgdtheory.com/curri.html. I am grateful
for these far-sighted people for providing a communication channel, whose importance one cannot
overestimate.

1.4.1 PART I: The notion of many-sheeted space-time

Basic extremals of the Kahler action

The physical interpretation of the Kéahler function and the TGD based space-time concept are
the basic themes of this book. The aim is to develop what might be called classical TGD at
fundamental level. The strategy is simple: try to guess the general physical consequences of the
configuration space geometry and of the TGD based gauge field concept and study the simplest
extremals of K&hler action and try to abstract general truths from their properties.

The fundamental underlying assumptions are the following:

1. The 4-surface associated with given 3-surface defined by Kéhler function K as a preferred
extremal of the K&hler action is identifiable as a classical space-time. Number theoretically
preferred extremals would decompose to hyper-quaternionic and co-hyper-quaternionic re-
gions. The reduction of the classical theory to the level of the modified Dirac action implies
that the preferred extremals are critical in the sense of allowing infinite number of defor-
mations for which the second variation of Kéhler action vanishes [?] It is not clear whether
criticality and hyper-quaternionicity are consistent with each other.

Due to the preferred extremal property classical space-time can be also regarded as a gener-
alized Bohr orbit so that the quantization of the various parameters associated with a typical
extremal of the Kéhler action is expected to take place in general. In TGD quantum states
corresponds to quantum superpositions of these classical space-times so that this classical
space-time is certainly not some kind of effective quantum average space-time.

2. The bosonic vacuum functional of the theory is the exponent of the Kahler function Qp =
exp(K). This assumption is the only assumption about the dynamics of the theory and is
necessitated by the requirement of divergence cancellation in perturbative approach.

3. Renormalization group invariance and spin glass analogy. The value of the Kéhler coupling
strength is such that the vacuum functional exp(K) is analogous to the exponent exp(H/T)
defining the partition function of a statistical system at critical temperature. This allows
Kahler coupling strength to depend on zero modes of the configuration space metric and as
already found there is very attractive hypothesis determining completely the dependence of
the Kahler coupling strength on the zero modes based on p-adic considerations motivated by
the spin glass analogy.


http://www.tgdtheory.com/curri.html
http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf
http://journals.sfu.ca/jnonlocality/index.php/jnonlocality
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http://www.tgdtheory.com/curri.html
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4. In spin degrees of freedom the massless Dirac equation for the induced spinor fields with mod-
ified Dirac action defines classical theory: this is in complete accordance with the proposed
definition of the configuration space spinor structure.

The geometrization of the classical gauge fields in terms of the induced gauge field concept is
also important concerning the physical interpretation. Electro-weak gauge potentials correspond
to the space-time projections of the spinor connection of CP,, gluonic gauge potentials to the
projections of the Killing vector fields of C'P, and gravitational field to the induced metric. The
topics to be discussed in this part of the book are summarized briefly in the following.

What the selection of preferred extremals of Kéahler action might mean has remained a long
standing problem and real progress occurred only quite recently (I am writing this towards the
end of year 2003).

1. The vanishing of Lorentz 4-force for the induced Kéahler field means that the vacuum 4-
currents are in a mechanical equilibrium. Lorentz 4-force vanishes for all known solutions
of field equations which inspires the hypothesis that all preferred extremals of Kéhler action
satisfy the condition. The vanishing of the Lorentz 4-force in turn implies local conserva-
tion of the ordinary energy momentum tensor. The corresponding condition is implied by
Einstein’s equations in General Relativity. The hypothesis would mean that the solutions of
field equations are what might be called generalized Beltrami fields. The condition implies
that vacuum currents can be non-vanishing only provided the dimension D¢ p, of the CP;
projection of the space-time surface is less than four so that in the regions with Deop, = 4,
Maxwell’s vacuum equations are satisfied.

2. The hypothesis that Kéhler current is proportional to a product of an arbitrary function ¢
of C'P, coordinates and of the instanton current generalizes Beltrami condition and reduces
to it when electric field vanishes. Instanton current has a vanishing divergence for Deop, <
4, and Lorentz 4-force indeed vanishes. Four 4-dimensional projection the scalar function
multiplying the instanton current can make it divergenceless. The remaining task would be
the explicit construction of the imbeddings of these fields and the demonstration that field
equations can be satisfied.

3. By quantum classical correspondence the non-deterministic space-time dynamics should
mimic the dissipative dynamics of the quantum jump sequence. Beltrami fields appear in
physical applications as asymptotic self organization patterns for which Lorentz force and
dissipation vanish. This suggests that preferred extemals of K&ahler action correspond to
space-time sheets which at least asymptotically satisfy the generalized Beltrami conditions
so that one can indeed assign to the final 3-surface a unique 4-surface apart from effects
related to non-determinism. Preferred extremal property abstracted to purely algebraic gen-
eralized Beltrami conditions makes sense also in the p-adic context.

This chapter is mainly devoted to the study of the basic extremals of the Kéhler action besides
the detailed arguments supporting the view that the preferred extrema satisfy generalized Beltrami
conditions at least asymptotically.

The newest results discussed in the last section about the weak form of electric-magnetic duality
suggest strongly that Beltrami property is general and together with the weak form of electric-
magnetic duality allows a reduction of quantum TGD to almost topological field theory with Kéhler
function allowing expression as a Chern-Simons term.

The surprising implication of the duality is that Kahler form of C'P, must be replaced with that
for S? x C'P, in order to obtain a configuration space metric which is non-trivial in M* degrees
of freedom. This modification implies much richer vacuum structure than the original Kéahler
action which is a good news as far as the description of classical gravitational fields in terms of
small deformations of vacuum extremals with the four-momentum density of the topologically
condensed matter given by Einstein’s equations is considered. The breaking of Lorentz invariace
from SO(3,1) to SO(3) is implied already by the geometry of C'D but is extremely small for a
given causal diamond (C'D). Since a wave function over the Lorentz boosts and translates of C'D is
allowed, there is no actual breaking of Poincare invariance at the level of the basic theory. Beltrami
property leads to a rather explicit construction of the general solution of field equations based on
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the hydrodynamic picture implying that single particle quantum numbers are conserved along flow
lines defined by the instanton current. The construction generalizes also to the fermionic sector.

General View About Physics in Many-Sheeted Space-Time: Part I

This chapter is first part of the discussion devoted to the notion of many-sheeted space-time.
The notion of many-sheeted space-time used is roughly that as it was around 1990 and text only
refers to the recent picture when needed. Topological condensation and somewhat questionable
notion of topological evaporation represent the basic new concepts of TGD and an attempt to
formulate a general qualitative theory of the topological condensation and evaporation and TGD
based space-time concept is made.

The fusion of real and various p-adic physics to single coherent whole by generalizing the
notion of number, the generalization of the notion of the imbedding space to allow a mathematical
representation of dark matter hierarchy based on dynamical and quantized Planck constant, parton
level formulation of TGD using light-like 3-surfaces as basic dynamical objects, and so called zero
energy ontology force to generalizes considerably the view about space-time. These developments
are discussed in the next chapter.

The topics to be discussed in the sequel will be following.

1. The general structure of topological condensate

The question what 3-space looks like in various scales and end up to a purely topological
description for the generation of structures. Topological arguments imply a finite size for non-
vacuum 3-surfaces and the conservation of the gauge and gravitational fluxes requires that 3-
surface feeds these fluxes to a larger 3-surface via # contacts situated near the boundaries of the
3-surface. Renormalization group invariance (RGI) hypothesis suggests that 3-surfaces with all
sizes are important in the functional integral and this leads to the idea of the many-sheeted space-
time with hierarchical, fractal like structure such that each level of the hierarchy corresponds to a
characteristic length scale.

2. Topological field quantization

The general space-time picture suggested by RGI hypothesis can be justified mathematically.
Due to the compactness of C' Py, a general space-time surface representable as a map M* — CP,
decomposes into regions, "topological field quanta”’, characterized by certain vacuum quantum
numbers and 3-surface is in general unstable against the decay to disjoint components along the
boundaries of the field quanta.

Topological field quanta have finite size depending on the values of the vacuum quantum num-
bers: the size increases as the values of the vacuum quantum numbers increase. Topological field
quantum is therefore a good candidate for a quantum coherent system provided some Bose Einstein
condensate or quantum coherent state is available. The BE condensate or coherent state of the
light # contacts (wormhole contacts) near the boundaries of the topological field quantum is a
good candidate in this respect.

The requirement of the gauge charge conservation in implies the hierarchical structure of the
topological condensate: gauge fluxes must go somewhere from the outer boundaries of the topolog-
ical field quantum with finite size and this ’'somewhere’ must be a larger topological field quantum,
which in turn feeds its gauge fluxes to a larger topological field quantum,.... Of course, the non-
linearity of the theory could allow vacuum charge densities which can cancel the net charge near
boundaries. The recent view about quantum TGD however supports the conclusion that vacuum
currents are light-like and do not contribute to charge renormalization. This provides a justification
for the notion of p-adic coupling constant evolution.

Topological field quanta allow discrete scalings as a dynamical symmetry. p-Adic length scale
hypothesis states that the allowed scaling factors correspond to powers of ,/p, where the prime p
satisfies p ~ 2 k integer with prime values favored. p-Adic fractality (actually multi-p-fractality)
can be justified more rigorously by a precise formulation for the fusion of real and various p-adic
physics based on the generalization of the notion of number.

3. General physical consequences of new view about space-time

The physical consequences of the new space-time picture are nontrivial at all length scales.



20 Chapter 1. Introduction

1. A natural interpretation for the hierarchical structure is in terms of bound state formation.
Quarks condense to form hadrons, nucleons condense to form atomic nuclei, nuclei and
electrons condense to form atoms, how atoms condense to form molecules, and so on. One
ends up with a general picture for the topology of 3-space associated with, say, solid state
and with the idea that even the macroscopic bodies of the everyday world correspond to
topologically condensed 3-surfaces.

2. The join of 3-surfaces along their boundaries defines a new kind of interaction, which has
in fact has been used in phenomenological modeling of chemical reactions. Usually chemical
bond is believed to result from Schrédinger equation. At the macroscopic level this interaction
is rather familiar to us since it means that two macroscopic bodies just touch each other.

3. In TGD context there are purely topological necessary conditions for quantum coherence
and a topological description for dissipative phenomena. The formation of the join along
boundaries bonds plays a decisive role in the description and this process provides a universal
manner to generate macroscopic quantum systems. There is also a topological description
for the formation of the supra phases and the phase of the order parameter of the supra
phase ground state contains information about the homotopy of the join along boundaries
condensate.

4. Gauge bosons and Higgs boson as wormhole contacts

The proper understanding of the concepts of gauge charges and fluxes and their gravitational
counterparts in TGD space-time has taken a lot of efforts.

1. Wormhole (#-) contact is the key notion. Wormhole contacts can be regarded as particles
carrying classical charges defined by the gauge fluxes but behaving as extremely tiny dipoles
quantum mechanically in the case that gauge charge is conserved. Gauge fluxes and gauge
charges assignable to light-like 3-D surfaces (wormhole throats, elementary particle hori-
zons, causal determinants) surrounding a topologically condensed C' P, type extremals can
be identified as the quantum numbers assignable to fermionic oscillator operators generating
the state associated with horizon (wormhole throat) identifiable as a parton.

2. Quantum classical correspondence requires that commuting classical gauge charges are quan-
tized and this is expected to be true by the generalized Bohr orbit property of the space-time
surface.

3. Both gauge bosons and Higgs boson must be identified as wormhole contacts whereas ele-
mentary fermions correspond to wormhole throats associated with topologically condensed
CP; type vacuum extremals. Gravitons in turn correspond to string like objects formed by
pairs of wormhole contacts connected by a flux tube.

5. The interpretation of long range weak and color gauge fields

In TGD gravitational fields are accompanied by long ranged electro-weak and color gauge fields.
The only possible interpretation is that there exists a p-adic hierarchy of color and electro-weak
physics such that weak bosons are massless below the p-adic length scale determining the mass
scale of weak bosons. By quantum classical correspondence classical long ranged gauge fields serve
as space-time correlates for gauge bosons below the p-adic length scale in question.

The unavoidable long ranged electro-weak and color gauge fields are created by dark matter
and dark particles can screen dark nuclear electro-weak charges below the weak scale. Above this
scale vacuum screening occurs as for ordinary weak interactions. Dark gauge bosons are massless
below the appropriate p-adic length scale but massive above it and U(2).,, is broken only in the
fermionic sector. For dark copies of ordinary fermions masses are essentially identical with those
of ordinary fermions.

This interpretation is consistent with the standard elementary particle physics for visible mat-
ter apart from predictions such as the possibility of p-adically scaled up versions of ordinary quarks
predicted to appear already in ordinary low energy hadron physics. The most interesting implica-
tions are seen in longer length scales. Dark variants of ordinary valence quarks and gluons and a
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scaled up copy of ordinary quarks and gluons are predicted to emerge already in ordinary nuclear
physics. Chiral selection in living matter suggests that dark matter is an essential component of
living systems so that non-broken U(2).,, symmetry and and free color in bio length scales become
characteristics of living matter and of bio-chemistry and bio-nuclear physics. An attractive solu-
tion of the matter antimatter asymmetry is based on the identification of also antimatter as dark
matter.

In this chapter the above vision is discussed in detail. As an application a simple model of color
confinement is discussed using the general properties of the induced (classical) color gauge field,
in particular the fact that its holonomy group is Abelian.

General View About Physics in Many-Sheeted Space-Time: Part II

This chapter, which is second part of a summary about the recent view about many-sheeted space-
time, provides a summary of the developments in TGD that have occurred during last few years
(the year I am writing this is 2007). The most important steps of progress are following ones.

1. Parton level formulation of quantum TGD

The formulation of quantum TGD at partonic level identifying fundamental objects as light-like
3-surfaces having also interpretation as random light-like orbits of 2-D partons having arbitrarily
large size. This picture reduces quantum TGD to an almost-topological quantum field theory and
leads to a dramatic understanding of S-matrix. A generalization of Feynman diagrams emerges
obtained by replacing lines of Feynman diagram with light-like 3-surfaces meeting along their ends
at vertices. This picture is different from that of string models and means also a generalization of
the view about space-time and 3-surface since these surfaces cannot be assumed to be a smooth
manifold anymore.

2. Zero energy ontology

In zero energy ontology physical states are creatable from vacuum and have vanishing net quan-
tum numbers, in particular energy. Zero energy states can be decomposed to positive and negative
energy parts with definite geometro-temporal separation, call it T, and having interpretation in
terms of initial and final states of particle reactions. Zero energy ontology is consistent with or-
dinary positive energy ontology at the limit when the time scale of the perception of observer is
much shorter than 7'

Zero energy ontology leads to the view about S-matrix as a characterizer of time-like entangle-
ment associated with the zero energy state and a generalization of S-matrix to what might be called
M-matrix emerges. M-matrix is complex square root of density matrix expressible as a product of
real valued "modulus” and unitary matrix representing phase and can be seen as a matrix valued
generalization of Schréodinger amplitude. Also thermodynamics becomes an inherent element of
quantum theory in this approach.

8. Fusion of real and p-adic physics to single one

The fusion of p-adic physics and real physics to single coherent whole requires generalization
of the number concept obtained by gluing reals and various p-adic number fields along common
algebraic numbers. This leads to a new vision about how cognition and intentionality make them-
selves visible in real physics via long range correlations realized via the effective p-adicity of real
physics. The success of the p-adic length scale hypothesis and p-adic mass calculations suggest
that cognition and intentionality are present already at elementary particle level. This picture
leads naturally to an effective discretization of the real physics at the level of S-matrix and relying
on the notion of umber theoretic braid.

4. Dark matter hierarchy and hierarchy of Planck constants

Dark matter revolution with levels of the hierarchy labeled by values of Planck constant forces
a further generalization of the notion of imbedding space and thus of space-time. One can say,
that imbedding space is a book like structure obtained by gluing together infinite number of copies
of the imbedding space like pages of a book: two copies characterized by singular discrete bundle
structure are glued together along 4-dimensional set of common points. These points have physical
interpretation in terms of quantum criticality. Particle states belonging to different sectors (pages
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of the book) can interact via field bodies representing space-time sheets which have parts belonging
to two pages of this book.

5. Equivalence Principle and evolution of gravitational constant

Before saying anything about evolution of gravitational constant one must understand whether
it is a fundamental constant or prediction of quantum TGD. Also one should understand whether
Equivalence Principle holds true and if so, in what sense. Also the identification of gravitational
and inertial masses seems to be necessary.

1. The coset construction for super-symplectic and super Kac-Moody algebras implies Equiva-
lence Principle in the sense that four-momenta assignable to the Super Virasoro generators
of the two algebras are identical. The challenge is to understand this result in more concrete
terms.

2. The progress made in the understanding of number theoretical compactification led to a
dramatic progress in the construction of configuration space geometry and spinor structure
in terms of the modified Dirac operator associated with light-like 3-surfaces appearing in the
slicing of the preferred extremal X (X 7) of Kéhler action to light-like 3-surfaces Y;* "parallel”
to X 13 Even more the M* projection is predicted to have a slicing into 2-dimensional stringy
worldsheets having M?(x) C M* as a tangent space at point z.

3. By dimensional reduction one can assign to any stringy slice Y2 a stringy action obtained
by integrating Kahler action over the transversal degrees of freedom labeling the copies of
Y2. One can assign length scale evolution to the string tension 7'(x), which in principle can
depend on the point of the string world sheet and thus evolves. T'(x) is not identifiable as
inverse of gravitational constant but by general arguments proportional to 1/ Lg, where L,
is p-adic length scale.

4. Gravitational constant can be understood as a product of L% with the exponential of the
Kahler action for the two pieces of C' P, type vacuum extremals representing wormhole con-
tacts assignable to graviton connected by the string world sheets. The volume of the typical
CP, type extremal associated with the graviton increases with L, so that the exponential
factor decreases reducing the growth due to the increase of L,. Hence G could be RG in-
variant in p-adic coupling constant evolution. It does not make sense to formulate evolution
of gravitational constant at space-time level and gravitational constant characterizes given
CD.

5. Gravitational mass is assigned to the stringy world sheet and should be identical with the
inertial mass identified as Noether charge assignable to the preferred extremal. By construc-
tion there are good hopes that for a proper choice of G gravitational and inertial masses are
identical.

6. Renormalization group equations for gauge couplings at space-time level

Renormalization group evolution equations for gauge couplings at given space-time sheet are
discussed using quantum classical correspondence. For known extremals of Ké&hler action gauge
couplings are RG invariants inside single space-time sheet, which supports the view that discrete
p-adic coupling constant evolution replaces the ordinary coupling constant evolution.

7. Quantitative predictions for the values of coupling constants

The latest progress in the understanding of p-adic coupling constant evolution comes from a
formula for Ké&hler coupling strength ax in terms of Dirac determinant of the modified Dirac
operator associated with Kahler action.

The formula for a fixes its number theoretic anatomy and also that of other coupling strengths.
The assumption that simple rationals (p-adicization) are involved can be combined with the input
from p-adic mass calculations and with an old conjecture for the formula of gravitational constant
allowing to express it in terms of C'P, length scale and Kahler action of topologically condensed C P,
type vacuum extremal. The prediction is that a g is renormalization group invariant and equals
to the value of fine structure constant at electron length scale characterized by Mio7. Although
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Newton’s constant is proportional to p-adic length scale squared it can be RG invariant thanks
to exponential reduction due to the presence of the exponent of Kéahler action associated with
the two C'P, type vacuum extremals representing the wormhole contacts associated with graviton.
The number theoretic anatomy of R?/G allows to consider two options. For the first one only
M;o7 gravitons are possible number theoretically. For the second option gravitons corresponding
to p ~ 2F are possible.

A relationship between electromagnetic and color coupling constant evolutions based on the
formula 1/cem, + 1/as = 1/ak is suggested by the induced gauge field concept, and would mean
that the otherwise hard-to-calculate evolution of color coupling strength is fixed completely. The
predicted value of o, at intermediate boson length scale is correct.

In this chapter the above topics are discussed in detail. Also the possible role of so called super-
symplectic gauge bosons in the understanding of non-perturbative phase of QCD and black-hole
physics is discussed.

1.4.2 PART II: Many-Sheeted Cosmology, and Astrophysics
The Relationship Between TGD and GRT

In this chapter the recent view about TGD as Poincare invariant theory of gravitation is discussed.
Radically new views about ontology were necessary before it was possible to see what had been
there all the time. Zero energy ontology states that all physical states have vanishing net quantum
numbers. The hierarchy of dark matter identified as macroscopic quantum phases labeled by
arbitrarily large values of Planck constant is second aspect of the new ontology.

1. Is Equivalence Principle satisfied in TGD?

Whether or not Equivalence Principle holds true in TGD Universe has been a long standing
issue. The source of problems was the attempt to deduce the formulation of Equivalence Principle in
the framework provided by General Relativity framework rather than in string model like context.
There were several steps in the enlightment process.

1. First came the conviction that coset representation for super-symplectic and super Kac-
Moody algebras provides extremely general formulation of Equivalence Principle in which
inertial and gravitational four-momenta are replaced with Super Virasoro generators of two
algebras whose differences annihilate physical states. This idea came for years before becom-
ing aware of its importance and I simply forgot it.

2. Next came the realization of the fundamental role of number theoretical compactification
providing a number theoretical interpretation of M* x C'P, and thus also of standard model
quantum numbers. This lead to the identification of the preferred extremals of Kahler action
and to the formulation of quantum TGD in terms of second quantized induced spinors fields.
One of conclusion was that dimensional reduction for preferred extremals of Kéhler action-
if they have the properties required by theoretic compactification- leads to string model with
string tension which is however not proportional to the inverse of Newton’s constant but
to Lf,, p-adic length scale squared and thus gigantic. The connection between gravitational
constant and Lf, comes from an old argument that I discovered about two decades ago and
which allowed to predict the value of Kéhler coupling strength by using as input electron mass
and p-adic mass calculations. In this framework the role of Planck length as a fundamental
length scale is taken by C' P, size so that Planck length scale loses its magic role as a length
scale in which usual views about space-time geometry cease to hold true.

3. The next step was the realization that zero energy ontology allows to avoid the paradox
implied in positive energy ontology by the fact that gravitational energy is not conserved but
inertial energy identified as Noether charge is. Energy conservation is always in some length
scale in zero energy ontology.

4. As a matter fact, there was still one step. I had to become fully aware that the identification
of gravitational four-momentum in terms of Einstein tensor makes sense only in long length
scales. This is of course trivial but for some reason I did not realize that this fact resolves
the paradoxes associated with objects like cosmic strings.
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To sum up, the understanding of Equivalence Principle in TGD context required quite many dis-
coveries of mostly mathematical character: the understanding of the super-conformal symmetries
of quantum TGD, the discovery of zero energy ontology, the identification of preferred extremals
of Kahler action by requiring number theoretical compactification, and the discovery that dimen-
sional reduction allows to formulate quantum in terms of slicing of space-time surface by stringy
word sheets.

2. The problem of cosmological constant

A further implication of dark matter hierarchy is that astrophysical systems correspond to
stationary states analogous to atoms and do not participate to cosmic expansion in a contin-
uous manner but via discrete quantum phase transitions in which gravitational Planck constant
increases. By quantum criticality of these phase transitions critical cosmologies are excellent candi-
dates for the modeling of these transitions. Imbeddable critical (and also over-critical) cosmologies
are unique apart from a parameter determining their duration and represent accelerating cosmic
expansion so that there is no need to introduce cosmological constant.

It indeed turns out possible to understand these critical phases in terms of quantum phase
transition increasing the size of large modeled in terms of cosmic strings. A possible mechanism
driving the strings to the boundaries of large voids could be repulsive interaction due to net charges
of strings. Also repulsive gravitational acceleration could do this. In this framework cosmological
constant like parameter does not characterize the density of dark energy but that of dark matter
identifiable as quantum phases with large Planck constant.

A further problem is that the naive estimate for the cosmological constant is predicted to be
by a factor 10'?° larger than its value deduced from the accelerated expansion of the Universe. In
TGD framework the resolution of the problem comes naturally from the fact that large voids are
quantum systems which follow the cosmic expansion only during the quantum critical phases.

p-Adic fractality predicting that cosmological constant is reduced by a power of 2 in phase
transitions occurring at times T'(k) o 2k/2 which correspond to p-adic time scales. These phase
transitions would naturally correspond to quantum phase transitions increasing the size of the
large voids during which critical cosmology predicting accelerated expansion naturally applies. On
the average A(k) behaves as 1/a?, where a is the light-cone proper time. This predicts correctly
the order of magnitude for observed value of A.

3. Topics of the chapter

The topics discussed in the chapter are following.

1. The basic principles of GRT (General Coordinate Invariance, Equivalence Principle, and
Machian Principle) are discussed from TGD point of view.

2. The theory is applied to the vacuum extremal embeddings of Reissner-Nordstrém and Schwartschild

metric.

3. A model for the final state of a star, which indicates that Z° force, presumably created by dark
matter, might have an important role in the dynamics of the compact objects. During year
2003, more than decade after the formulation of the model, the discovery of the connection
between supernovas and gamma ray bursts provided strong support for the predicted axial
magnetic and Z° magnetic flux tube structures predicted by the model for the final state of
a rotating star. Two years later the interpretation of the predicted long range weak forces
as being caused by dark matter emerged.

The progress in understanding of hadronic mass calculations has led to the identification of
so called super-symplectic bosons and their super-counterparts as basic building blocks of
hadrons. This notion leads also to a microscopic description of neutron stars and black-holes
in terms of highly entangled string like objects in Hagedorn temperature and in very precise
sense analogous to gigantic hadrons.

4. A brief summary about cosmic strings, which form a corner stone of TGD inspired cosmology,
is given.

5. Allais effect is interpreted as interference effect made possible by gigantic value of gravita-
tional Planck constant assignable to space-time sheets mediating gravitational interaction.
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There is experimental evidence for gravimagnetic fields in rotating superconductors which
are by 20 orders of magnitudes stronger than predicted by general relativity. A TGD based
explanation of these observations is proposed. Also the predicted anomalous time dilation
due to warping of space-time sheet and possible even for gravitational vacua is discussed.

TGD and Potential Anomalies of GRT

In this chapter the applications of TGD to various real or potential anomalies of GRT approach
are discussed.

1. In the first section Allais effect as a possible evidence for large i dark gravitons is discussed.

2. TGD inspired model of gravimagnetism is studied. There are claims about strong gravimag-
netism and these claims are considered in terms large & hypothesis.

3. The dependence of operationally defined light velocity on space-time sheet distinguishes
between the sub-manifold gravity of TGD and the abstract manifold gravity GRT. Possible
evidence for the effect is discussed. These effects are discussed in several sections. Also
the time dilation effect caused by the warping of space-time sheet in absence of matter is
considered.

4. There are also some considerations not strictly related to anomalies such as possible inter-
pretations of Machian Principle in TGD framework.

Cosmic strings

Cosmic strings belong to the basic extremals of the Kéhler action. The upper bound for string
tension of the cosmic strings is 7'~ .5 x 1075/G and in the same range as the string tension of
GUT strings and this makes them very interesting cosmologically although TGD cosmic strings
have otherwise practically nothing to do with their GUT counterparts.

1. Basic ideas

The understanding of cosmic strings has developed only slowly and has required dramatic
modifications of existing views.

1. Zero energy ontology implies that the inertial energy and all quantum numbers of the Universe
vanishes and physical states are zero energy states decomposing into pairs of positive and
negative energy states localizable to the light-like boundaries of causal diamonds defined
as intersections of future and past directed light-cones. Positive energy ontology is a good
approximation under certain assumptions.

2. Dark matter hierarchy whose levels are labeled by gigantic values of gravitational Planck
constant associated with dark matter is second essential piece of the picture.

3. The second variation of Kéhler action vanishes for preferred extremals - at least the second
variations associated with dynamical symmetries. This guarantees that Noether currents
assignable to the modified Dirac action are conserved. The properties of the preferred ex-
tremals allow a dimensional reduction providing formulations of quantum TGD in terms of
dual slicings of space-time surface by string word sheets and partonic 2-surfaces. Stringy
picture allows a formulation Equivalence Principle at space-time level. The realization that
general relativistic formulation of Equivalence Principle holds true only in long length scales
resolves various paradoxes, which have plagued quantum TGD from the beginning.

4. The basic question whether one can model the exterior region of the topologically condensed
cosmic string using General Relativity. The exterior metric of the cosmic string corresponds
to a small deformation of a vacuum extremal. The angular defect and surplus associated
with the exterior metrics extremizing curvature scalar can be much smaller than assuming
vacuum Einstein’s equations. The conjecture is that the exterior metric of galactic string
conforms with the Newtonian intuitions and thus explains the constant velocity spectrum of
distant stars if one assumes that galaxies are organized to linear structures along long strings
like pearls in a necklace.
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2. Critical and over-critical cosmologies involve accelerated cosmic expansion

In TGD framework critical and over-critical cosmologies are unique apart from single parameter
telling their duration and predict the recently discovered accelerated cosmic expansion. Critical
cosmologies are naturally associated with quantum critical phase transitions involving the change
of gravitational Planck constant. A natural candidate for such a transition is the increase of the size
of a large void as galactic strings have been driven to its boundary. During the phase transitions
connecting two stationary cosmologies (extremals of curvature scalar) also determined apart from
single parameter, accelerated expansion is predicted to occur. These transitions are completely
analogous to quantum transitions at atomic level.

The proposed microscopic model predicts that the TGD counterpart of the quantity p + 3p for
cosmic strings is negative during the phase transition which implies accelerated expansion. Dark
energy is replaced in TGD framework with dark matter indeed predicted by TGD and its fraction
is .74 as in standard scenario. Cosmological constant thus characterizes phenomenologically the
density of dark matter rather than energy in TGD Universe.

The sizes of large voids stay constant during stationary periods which means that also cosmo-
logical constant is piecewise constant. p-Adic length fractality predicts that A scales as 1/L?(k) as
a function of the p-adic scale characterizing the space-time sheet of void. The order of magnitude
for the recent value of the cosmological constant comes out correctly. The gravitational energy
density described by the cosmological constant is identifiable as that associated with topologically
condensed cosmic strings and of magnetic flux tubes to which they are gradually transformed
during cosmological evolution.

8. Cosmic strings and generation of structures

1. In zero energy ontology cosmic strings must be created from vacuum as zero energy states
consisting of pairs of strings with opposite time orientation and inertial energy.

2. The counterpart of Hawking radiation provides a mechanism by which cosmic strings can
generate ordinary matter. The splitting of cosmic strings followed by a ”burning” of the string
ends provides a second manner to generate visible matter. Matter-antimatter symmetry
would result if antimatter is inside cosmic strings and matter in the exterior region. A
justification for CP asymmetry comes from basic quantum TGD. One can add to Kahler
function of the configuration space an imaginary part defined by instanton term J A J. This
term does not affect Kéhler metric but implies CP breaking.

3. Zero energy ontology has deep implications for the cosmic and ultimately also for biological
evolution (magnetic flux tubes paly a fundamental role in TGD inspired biology and cos-
mic strings are limiting cases of them). The arrows of geometric time are opposite for the
strings and also for positive energy matter and negative energy antimatter. This implies a
competition between two dissipative time developments proceeding in different directions of
geometric time and looking self-organization and even self-assembly from the point of view of
each other. This resolves paradoxes created by gravitational self-organization contra second
law of thermodynamics. So called super-symplectic matter at cosmic strings implies large
p-adic entropy resolves the well-known entropy paradox.

4. p-Adic fractality and simple quantitative observations lead to the hypothesis that cosmic
strings are responsible for the evolution of astrophysical structures in a very wide length
scale range. Large voids with size of order 10® light years can be seen as structures cosmic
strings wound around the boundaries of the void. Galaxies correspond to same structure with
smaller size and linked around the supra-galactic strings. This conforms with the finding
that galaxies tend to be grouped along linear structures. Simple quantitative estimates show
that even stars and planets could be seen as structures formed around cosmic strings of
appropriate size. Thus Universe could be seen as fractal cosmic necklace consisting of cosmic
strings linked like pearls around longer cosmic strings linked like...

4. Cosmic strings, gamma ray bursts, and supernovae

During year 2003 two important findings related to cosmic strings were made.
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1. A correlation between supernovae and gamma ray bursts was observed.

2. Evidence that some unknown particles of mass m ~ 2m, and decaying to gamma rays and/or
electron positron pairs annihilating immediately serve as signatures of dark matter. These
findings challenge the identification of cosmic strings and/or their decay products as dark
matter, and also the idea that gamma ray bursts correspond to cosmic fire crackers formed
by the decaying ends of cosmic strings.

This forces the updating of the more than decade old rough vision about topologically condensed
cosmic strings and about gamma ray bursts described in this chapter. According to the updated
model, cosmic strings transform in topological condensation to magnetic flux tubes about which
they represent a limiting case. Primordial magnetic flux tubes forming ferro-magnet like structures
become seeds for gravitational condensation leading to the formation of stars and galaxies. The
TGD based model for the asymptotic state of a rotating star as dynamo leads to the identification
of the predicted magnetic flux tube at the rotation axis of the star as Z° magnetic flux tube of
primordial origin. Besides Z" magnetic flux tube structure also magnetic flux tube structure exists
at different space-time sheet but is in general not parallel to the Z° magnetic structure. This
structure cannot have primordial origin (the magnetic field of star can even flip its polarity).

The flow of matter along Z° magnetic (rotation) axis generates synchrotron radiation, which
escapes as a precisely targeted beam along magnetic axis and leaves the star. The identification is
as the rotating light beam associated with ordinary neutron stars. During the core collapse leading
to the supernova this beam becomes gamma ray burst. The mechanism is very much analogous to
the squeezing of the tooth paste from the tube. The fact that all nuclei are fully ionized Z° ions,
the Z° charge unbalance caused by the ejection of neutrinos, and the radial compression make
the effect extremely strong so that there are hopes to understand the observed incredibly high
polarization of 80 + 20 per cent.

TGD suggests the identification of particles of mass m ~ 2m,. accompanying dark matter as
lepto-pions formed by color excited leptons, and topologically condensed at magnetic flux tubes
having thickness of about lepto-pion Compton length. Lepto-pions would serve as signatures of
dark matter whereas dark matter itself would correspond to the magnetic energy of topologically
condensed cosmic strings transformed to magnetic flux tubes.

TGD inspired cosmology

A proposal for what might be called TGD inspired cosmology is made. The basic ingredient of this
cosmology is the TGD counter part of the cosmic string. It is found that many-sheeted space-time
concept, the new view about the relationship between inertial and gravitational four-momenta, the
basic properties of the cosmic strings, zero energy ontology, the hierarchy of dark matter with levels
labeled by arbitrarily large values of Planck constant: the existence of the limiting temperature
(as in string model, too), the assumption about the existence of the vapor phase dominated by
cosmic strings, and quantum criticality imply a rather detailed picture of the cosmic evolution,
which differs from that provided by the standard cosmology in several respects but has also strong
resemblances with inflationary scenario.

TGD inspired cosmology in its recent form relies on an ontology differing dramatically from
that of GRT based cosmologies. Zero energy ontology states that all physical states have vanishing
net quantum numbers so that all matter is creatable from vacuum. The hierarchy of dark matter
identified as macroscopic quantum phases labeled by arbitrarily large values of Planck constant is
second aspect of the new ontology. The values of the gravitational Planck constant assignable to
space-time sheets mediating gravitational interaction are gigantic. This implies that TGD inspired
late cosmology might decompose into stationary phases corresponding to stationary quantum states
in cosmological scales and critical cosmologies corresponding to quantum transitions changing the
value of the gravitational Planck constant and inducing an accelerated cosmic expansion.

1. Zero energy ontology

The construction of quantum theory leads naturally to zero energy ontology stating that every-
thing is creatable from vacuum. Zero energy states decompose into positive and negative energy
parts having identification as initial and final states of particle reaction in time scales of perception
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longer than the geometro-temporal separation T' of positive and negative energy parts of the state.
If the time scale of perception is smaller than 7', the usual positive energy ontology applies.

In zero energy ontology inertial four-momentum is a quantity depending on the temporal time
scale T used and in time scales longer than T the contribution of zero energy states with parameter
T, < T to four-momentum vanishes. This scale dependence alone implies that it does not make
sense to speak about conservation of inertial four-momentum in cosmological scales. Hence it would
be in principle possible to identify inertial and gravitational four-momenta and achieve strong form
of Equivalence Principle. It however seems that this is not the correct approach to follow.

2. Dark matter hierarchy and hierarchy of Planck constants

Dark matter revolution with levels of the hierarchy labeled by values of Planck constant forces
a further generalization of the notion of imbedding space and thus of space-time. One can say,
that imbedding space is a book like structure obtained by gluing together infinite number of copies
of the imbedding space like pages of a book: two copies characterized by singular discrete bundle
structure are glued together along 4-dimensional set of common points. These points have physical
interpretation in terms of quantum criticality. Particle states belonging to different sectors (pages
of the book) can interact via field bodies representing space-time sheets which have parts belonging
to two pages of this book.

8. Quantum criticality

TGD Universe is quantum counterpart of a statistical system at critical temperature. As
a consequence, topological condensate is expected to possess hierarchical, fractal like structure
containing topologically condensed 3-surfaces with all possible sizes. Both Ké&hler magnetized
and Kéhler electric 3-surfaces ought to be important and string like objects indeed provide a
good example of Kéhler magnetic structures important in TGD inspired cosmology. In particular
space-time is expected to be many-sheeted even at cosmological scales and ordinary cosmology
must be replaced with many-sheeted cosmology. The presence of vapor phase consisting of free
cosmic strings containing topologically condensed fermions is second crucial aspect of TGD inspired
cosmology.

Quantum criticality of TGD Universe, which corresponds to the vanishing of second variation of
Kahler action for preferred extremals - at least of the variations related to dynamical symmetries-
supports the view that many-sheeted cosmology is in some sense critical. Criticality in turn
suggests fractality. Phase transitions, in particular the topological phase transitions giving rise to
new space-time sheets, are (quantum) critical phenomena involving no scales. If the curvature of
the 3-space does not vanish, it defines scale: hence the flatness of the cosmic time=constant section
of the cosmology implied by the criticality is consistent with the scale invariance of the critical
phenomena. This motivates the assumption that the new space-time sheets created in topological
phase transitions are in good approximation modelable as critical Robertson-Walker cosmologies
for some period of time at least.

These phase transitions are between stationary quantum states having stationary cosmologies as
space-time correlates: also these cosmologies are determined uniquely apart from single parameter.

4. Only sub-critical cosmologies are globally imbeddable

TGD allows global imbedding of subcritical cosmologies. A partial imbedding of one-parameter
families of critical and overcritical cosmologies is possible. The infinite size of the horizon for
the imbeddable critical cosmologies is in accordance with the presence of arbitrarily long range
fluctuations at criticality and guarantees the average isotropy of the cosmology. Imbedding is
possible for some critical duration of time. The parameter labeling these cosmologies is scale
factor characterizing the duration of the critical period. These cosmologies have the same optical
properties as inflationary cosmologies. Critical cosmology can be regarded as a ’Silent Whisper
amplified to Bang’ rather than ’'Big Bang’ and transformed to hyperbolic cosmology before its
imbedding fails. Split strings decay to elementary particles in this transition and give rise to seeds
of galaxies. In some later stage the hyperbolic cosmology can decompose to disjoint 3-surfaces.
Thus each sub-cosmology is analogous to biological growth process leading eventually to death.

5. Fractal many-sheeted cosmology

The critical cosmologies can be used as a building blocks of a fractal cosmology containing
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cosmologies containing ... cosmologies. p-Adic length scale hypothesis allows a quantitative for-
mulation of the fractality. Fractal cosmology predicts cosmos to have essentially same optic prop-
erties as inflationary scenario but avoids the prediction of unknown vacuum energy density. Fractal
cosmology explains the paradoxical result that the observed density of the matter is much lower
than the critical density associated with the largest space-time sheet of the fractal cosmology. Also
the observation that some astrophysical objects seem to be older than the Universe, finds a nice
explanation.

6. Cosmic strings as basic building blocks of TGD inspired cosmology

Cosmic strings are the basic building blocks of TGD inspired cosmology and all structures
including large voids, galaxies, stars, and even planets can be seen as pearls in a cosmic frac-
tal necklaces consisting of cosmic strings containing smaller cosmic strings linked around them
containing... During cosmological evolution the cosmic strings are transformed to magnetic flux
tubes with smaller Kahler string tension and these structures are also key players in TGD inspired
quantum biology.

The observed large voids would contain galactic cosmic strings at their boundaries. These voids
would participate cosmic expansion only in average sense. During stationary periods the quantum
states would be modelable using stationary cosmologies and during phase transitions increasing
gravitational Planck constant and thus size of the large void they critical cosmologies would be the
appropriate description. The acceleration of cosmic expansion predicted by critical cosmologies
can be naturally assigned with these periods. Classically the quantum phase transition would be
induced when galactic strings are driven to the boundary of the large void. The mechanism forcing
the phase transition could be repulsive Coulomb energy associated with dark matter at strings if
cosmic strings generate net em charge as a consequence of CP breaking (antimatter could reside
inside cosmic strings) or a repulsive gravitational acceleration. The large values of Planck constant
are crucial for understanding of living matter so that gravitation would play fundamental role also
in the evolution of life and intelligence.

Some sections are devoted to the TGD counterpart of inflationary cosmology. From the be-
ginning it has been clear that quantum criticality implying flatness of 3-space and thus criticality
is the TGD counterpart for inflationary cosmology. Only after the recent findings about evidence
for the polarization of CMB I realized that critical cosmology contains a period of very fast accel-
erating expansion and that both inflation and accelerating expansion much later are special cases
of criticality. This leads to a rather detailed view about how the temperature fluctuations could
emerged in TGD framework. The predecessor of inflationary cosmology would be cosmic string gas
in the light-cone of Minkowski space and critical period would mean the emergence of space-time
as we know it.

More about TGD inspired cosmology

This chapter can be regarded as second part of the previous chapter and is develoted to various
applications and problems of cosmology. Much of the text is written decade or two ago.

1. The anomalies of CMB are discussed as a natural continuation of discussion of the counterpart
of inflationary cosmology in TGD framework.

2. Simulating Big Bang in laboratory is the title of the next section. The motivation comes from
the observation that critical cosmology could serve as a universal model for phase transitions.

3. Some problems of existing cosmology are considered in TGD framework. Discussin includes
certain problems of the cosmology such as the questions why some stars seem to be older than
the Universe, the claimed time dependence of the fine structure constant, the generation of
matter antimatter asymmetry, the problem of the fermion families, and the redshift anomaly
of quasars. A mechanism for accelerated expansion of Universe is also considered. In the
recent framework this reduces to the critical cosmology and cosmological constant can be
assigned to the effective space-time defining GRT limit of TGD.
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4. There is a section about matter-antimatter asymmetry, baryogenesis, leptogenesis and TGD

discussing whether right-handed neutrino suggested to generate SUSY in TGD framework
could be the key entity in fermiogenesis.

. The remaining sections are devoted to Hogan’s theory abot quantum fluctuations as new kind

of noise and the question whether hyperbolic 3-manifolds emerging naturally in Zero Energy
Ontology might be useful in TGD inspired cosmology and explain some redshift anomalies.

TGD and Astrophysics

Astrophysics in TGD Universe is the basic topics of this chapter. The topics discussed are following.

1.

p-Adic length scale hypothesis can be applied in astrophysical length scales, too and some
examples of possible applications are discussed. One of the most interesting implications of
p-adicity is the possibility of series of phase transitions changing the value of cosmological
constant behaving as A oc 1/L?(k) as a function of p-adic length scale characterizing the size
of the space-time sheet.

. A model for the solar magnetic field as a bundle of topological magnetic flux tubes is con-

structed and a model of Sunspot cycle is proposed. This model is also shown to explain the
mysteriously high temperature of solar corona and also some other mysterious phenomena
related to the solar atmosphere. A direct connection with the TGD based explanation of the
dark energy as magnetic and Z° magnetic energy of the magnetic flux tubes containing dark
matter as ordinary matter, emerges. The matter in the solar corona is simply dark matter
leaked from the highly curved portions of the magnetic flux tubes to the space-time sheets
where it becomes visible. The generation of anomalous Z° charge caused by the runoff of
dark neutrinos in Super Nova could provide a first principle explanation for the avoidance of
collapse to black-hole in Super Nova explosion.

. One section is devoted to some astrophysical and cosmological anomalies such as the apparent

shrinking of solar system observed by Masreliez, Pioneer anomaly and Flyby anomaly.

. The astrophysics of solar system involves also an anomaly related to the precession of

equinoxes suggesting that Sun might have a companion. TGD suggests a model for anomalies
as being due to interaction magnetic flux tube connecting Sun to its companion.

. The TGD variant of the model of Nottale involved gravitational Planck constant hg,. is

discussed in detail. Also further indications for large values of Planck constant are discussed.

Quantum Astrophysics

In this chapter the topics relates to what might be called quantum astrophysics. Motivation comes
from the model for Nottale’s findings suggesting Bohr quantization of planetary orbits. The model
leads to the introduction of gravitational Planck constant hg. = GMm/vg, where vy corresponds
to a typical rotational velocity in two particle system. hgy, characterizes the interaction of masses
M and m and assigned to the magnetic flux tube connecting them and carrying the massless
extremals mediating gravitational interaction.

The topics discuss in this chapter are following.

1.

An updated view about hierarchy of Planck constants is discussed and the connection h.¢s =
hgr is shown to be consistent with TGD inspired quantum biology. Quantum gravity would
be in key role in biology as intuited also by Penrose.

. Vision about formation of structures and quantum chaos is astrophysical scales is discussed.

Also a speculative view about gravitational radiation based on hg, is considered.

. TGD suggests that cosmological evolution involves a series of phase transitions changing the

value of hg, occurring via periods of quantum criticality. The critical cosmology is fixed
apart from its duration. This suggests a piecewise accelerated expansion. Also inflationary
period would be example of this phenomenon as also accelerating expansion much later.
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4. Expanding Earth model has been proposed for long time ago to explain why the continents
seem to fit nicely to form a complete covering of the Earth’s surface. The model however
makes sense if the radius of Earth is one half of its recent value. TGD based interpretation
for the expansion is is in terms of a phase transition increasing hy, by factor 2.

5. Blackholes in TGD is the topic of the last two sections.

What are the counterparts of Einstein’s equations in TGD?

This chapter contains topics which do not fit naturally under any umbrella, but which I feel might
be of some relevance. Basically TGD inspired comments to the work of the people not terribly
relevant to quantum TGD itself are in question.

For few years ago Witten’s approach to 3-D quantum gravitation raised a considerable interest
and this inspired the comparison of this approach with quantum TGD in which light-like 3-surfaces
are in a key role. Few years later the entropic gravity of Verlinde stimulated a lot of fuss in blogs
and it is interesting to point out how the formal thermodynamical structure (or actually its ”square
root”) emerges in the fundamental formulation of TGD.

Few years later the entropic gravity of Verlinde stimulated a lot of fuss in blogs and it is
interesting to point out how the formal thermodynamical structure (or actually its ”square root”)
emerges in the fundamental formulation of TGD.

Is TGD consistent with Einstein’s equations and in what sense, has been the key question for
decades. Now the situation is settled and one can understand how the GRT space-time emerges
from TGD space-time as an approximate notion replacing many-sheeted space-time as 4-surface
with Minkowski metric replaced with an effective metric, which sums up the contributions of
various space-time sheets to the deformation from M?* metric. This approximation fails in very
early cosmology where string like objects dominate. This interpretation does not exclude the
possibility that also preferred extremals might in some sense satisfy Einstein’s equations although
this is by no means necessary. One of the attempts based on what now seems to be wrong view
about GRT-TGD relationship led to the idea that sub-manifold geometry allow to generalized the
notion of cosmological constants so that there would be several of them. Although the idea looks
now obsolete, I decided to keep it as a kind of curiosity.

1.4.3 PART III: Topological field quantization
Hydrodynamics and CP, geometry

The chapter begins with a brief summary of the basic notions related to many-sheeted space-time.
A generalization of hydrodynamics to a p-adic hierarchy of hydrodynamics is performed and a
mechanism of energy transfer between condensate levels is identified. Mary Selvam has found a
fascinating connection between the distribution of primes and the distribution of vortex radii in
turbulent flow in atmosphere. These observations provide new insights into p-adic length scale
hypothesis and suggest that TGD based generalization of Hawking-Bekenstein law holds even in
macroscopic length scales and that hydrodynamical vortices behave in some aspects like elementary
particles. TGD leads to a formulation of a general theory of phase transitions: the new element is
the presence of several condensate levels.

A topological model for the generation of the hydrodynamical turbulence is proposed. The ba-
sic idea is that hydrodynamical turbulence can be regarded as a spontaneous Kéhler magnetization
leading to the increase the value of Kahler function and therefore of the probability of the configu-
ration. Kéahler magnetization is achieved through the formation of a vortex cascade via the decay
of the mother vortex by the emission of smaller daughter vortices. Vortices with various values of
the fractal quantum number and with sizes related by a discrete scaling transformation appear in
the cascade. The decay of the vortices takes place via the so called phase slippage process.

An encouraging result is the prediction for the size distribution of the vortices: the prediction
is practically identical with that obtained from the model of Heisenberg but on rather different
physical grounds. The model is rather insensitive to the p-adic scaling of vortices in the transition
as long as it is smaller than A\ = 275. The model is also consistent with the assumption that the
decay of a vortex to smaller vortices corresponds to a phase transition from a given level of dark
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matter hierarchy to a lower level so that the value of & is reduced by a factor A = vy/n ~ 2711 /n,
n=1,2,... so that Compton length scales as well as sizes of vortices are reduced by this factor.

Macroscopic quantum phenomena and CP, geometry

Topological field quantization is applied to a unified description of three macroscopic quantum
phases: super conductors, super fluids and quantum Hall phase. The basic observation is that
the formation of the join along boundaries bonds makes possible the formation of macroscopic
quantum system from topological field quanta having size of the order of the coherence length ¢ for
ordinary phase. The presence of the bridges (join along boundaries bonds) makes possible supra
flow and the presence of two levels of the topological condensate explains the two-fluid picture of
super fluids. In standard physics, the order parameter is constant in the ground state. In TGD
context, the non-simply connected topology of the 3-surface makes possible ground states with a
covariantly constant order parameter characterized by the integers telling the change of the order
parameter along closed homotopically nontrivial loops.

The role of the ordinary magnetic field in super conductivity is taken by the Z° magnetic
field in super fluidity and the mathematical descriptions of super conductors and super fluids
become practically identical. The generalization of the quantization condition for the magnetic
flux to a condition involving also a velocity circulation, plays a central role in the description of
both phases and suggests a new description of the rotating super fluid and some new effects. A
classical explanation for the fractional Quantum Hall effect in terms of the topological field quanta
is proposed. Quantum Hall phase is very similar to the supra phases: an essential role is played
by the generalized quantization condition and the hydrodynamic description of the Hall electrons.

The results obtained support the view that in condensed matter systems topological field quanta
with size of the order of ¢ ~ 1078 — 10~7 meters are of special importance. This new length scale
is expected to have also applications to less exotic phenomena of the condensed matter physics
(the description of the conductors and di-electrics and ferromagnetism) and in hydrodynamics (the
failure of the hydrodynamic approximation takes place at this length scale). These field quanta of
course, correspond to only one condensate level and many length scales are expected to be present.
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Chapter 2

Basic Extremals of the Kahler
Action

2.1 Introduction

In this chapter the classical field equations associated with the Kahler action are studied. The study
of the extremals of the Kéahler action has turned out to be extremely useful for the development
of TGD. Towards the end of year 2003 quite dramatic progress occurred in the understanding of
field equations and it seems that field equations might be in well-defined sense exactly solvable.
The progress made during next five years led to a detailed understanding of quantum TGD at
the fundamental parton level and this provides considerable additional insights concerning the
interpretation of field equations.

2.1.1 About the notion of preferred extremal

The notion of preferred extremal has been central in classical TGD although the known solutions
could be preferred or not: the main challenge has been to understand what ”preferred” could mean.

In zero energy ontology (ZEO) one can also consider the releaving possibility that all extremals
are preferred ones! The two space-like 3-surfaces at the ends of CD define the space-time surface
connecting them apart from conformal symmetries acting as critical deformations. If 3-surface is
identified as union of both space-like 3-surfaces and the light-like surfaces defining parton orbits
connecting then, the conformal equivalence class of the preferred extremal is unique without any
additional conditions! This conforms with the view about hierarchy of Planck constants requiring
that the conformal equivalence classes of light-like surfaces must be counted as physical degrees of
freedom and also with the idea that these surface together define analog for the Wilson loop. The
non-determinism of Kéhler action suggests that ”preferred” could be obsolete in given length scale
resolution.

Actually all the discussions of this chapter are about known extremals in general so that the
attribute ”preferred” is not relevant for them.

2.1.2 Beltrami fields and extremals

The vanishing of Lorentz 4-force for the induced Kéhler field means that the vacuum 4-currents
are in a mechanical equilibrium. Lorentz 4-force vanishes for all known solutions of field equations
which inspires the hypothesis that preferred extremals satisfy the condition. The vanishing of the
Lorentz 4-force in turn implies a local conservation of the ordinary energy momentum tensor. The
corresponding condition is implied by Einstein’s equations in General Relativity. The hypothesis
would mean that the solutions of field equations are what might be called generalized Beltrami
fields. If Kahler action is defined by C' P, Kéahler form alone, the condition implies that vacuum
currents can be non-vanishing only provided the dimension D¢p, of the C'P, projection of the
space-time surface is less than four so that in the regions with Dop, = 4, Maxwell’s vacuum
equations are satisfied.

35
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The hypothesis that Kahler current is proportional to a product of an arbitrary function ¢
of CP, coordinates and of the instanton current generalizes Beltrami condition and reduces to it
when electric field vanishes. Instanton current has vanishing divergence for Do p, < 4, and Lorentz
4-force indeed vanishes. The remaining task would be the explicit construction of the imbeddings
of these fields and the demonstration that field equations can be satisfied.

Under additional conditions magnetic field reduces to what is known as Beltrami field. Beltrami
fields are known to be extremely complex but highly organized structures. The natural conjecture
is that topologically quantized many-sheeted magnetic and Z° magnetic Beltrami fields and their
generalizations serve as templates for the helical molecules populating living matter, and explain
both chirality selection, the complex linking and knotting of DNA and protein molecules, and even
the extremely complex and self-organized dynamics of biological systems at the molecular level.

Field equations can be reduced to algebraic conditions stating that energy momentum tensor
and second fundamental form have no common components (this occurs also for minimal surfaces
in string models) and only the conditions stating that Kéhler current vanishes, is light-like, or
proportional to instanton current, remain and define the remaining field equations. The conditions
guaranteeing topologization to instanton current can be solved explicitly. Solutions can be found
also in the more general case when Kahler current is not proportional to instanton current. On
basis of these findings there are strong reasons to believe that classical TGD is exactly solvable.

An important outcome is the notion of Hamilton-Jacobi structure meaning dual slicings of M*
projection of preferred extremals to string world sheets and partonic 2-surfaces. The necessity
of this slicing was discovered years later from number theoretic compactification and is now a
key element of quantum TGD allowing to deduce Equivalence Principle in its stringy form from
quantum TGD and formulate and understand quantum TGD in terms of modified Dirac action
assignable to Kéahler action. The conservation of Noether charges associated with modified Dirac
action requires the vanishing of the second second variation of Kéhler action for preferred extremals.
Preferred extremals would thus define space-time representation for quantum criticality. Infinite-
dimensional variant for the hierarchy of criticalities analogous to the hierarchy assigned to the
extrema of potential function with levels labeled by the rank of the matrix defined by the second
derivatives of the potential function in catastrophe theory would suggest itself.

A natural interpretation for deformations would be as conformal gauge symmetries due to the
non-determinism of Kéhler action. They would transform to each other preferred extremals having
fixed 3-surfaces as ends at the boundaries of the causal diamond. They would preserve the value of
Kahler action and those of conserved charges. The assumption is that there are n gauge equivalence
classes of these surfaces and that n defines the value of the effective Planck constant heyyr =n X h
in the effective GRT type description replacing many-sheeted space-time with single sheeted one.

2.1.3 In what sense field equations could mimic dissipative dynamics?

By quantum classical correspondence the non-deterministic space-time dynamics should mimic the
dissipative dynamics of the quantum jump sequence. The nontrivial question is what this means
in TGD framework.

1. Beltrami fields appear in physical applications as asymptotic self organization patterns for
which Lorentz force and dissipation vanish. This suggests that preferred extremals of Kahler
action correspond to space-time sheets which at least asymptotically satisfy generalized Bel-
trami conditions so that one can indeed assign to the final (rather than initial!) 3-surface a
unique 4-surface apart from effects related to non-determinism. Preferred extremal property
of Kéahler action abstracted to purely algebraic generalized Beltrami conditions would make
sense also in the p-adic context. The general solution ansatz discussed in the last section
of the chapter assumes that all conserved isometry currents are proportional to instanton
current so that various charges are conserved separately for all flow lines: this means es-
ssentially the integrability of the theory. This ansatz is forced by the hypothesis that TGD
reduces to almost topological QFT and this idea. The basic consequence is that dissipation
is impossible classically.

2. A more radical view inspired by zero energy ontology is that the light-like 3-surfaces and
corresponding space-time regions with Euclidian signature defining generalized Feynman di-
agrams provide a space-time representation of dissipative dynamics just as they provide this
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representation in quantum field theory. Minkowskian regions would represent empty space
so that the vanishing of Lorentz 4-force and absence of dissipation would be natural. This
would mean very precise particle field duality and the topological pattern associated with
the generalized Feynman diagram would represent dissipation. One could also interprete
dissipation as transfer of energy between sheets of the many-sheeted space time and thus as
an essentially topological phenomenon. This option seems to be the only viable one.

2.1.4 The dimension of C'P, projection as classifier for the fundamental
phases of matter

The dimension D¢p, of C' P, projection of the space-time sheet encountered already in p-adic mass
calculations classifies the fundamental phases of matter. For Dcp, = 4 empty space Maxwell
equations hold true. The natural guess would be that this phase is chaotic and analogous to
de-magnetized phase. Dcp, = 2 phase is analogous to ferromagnetic phase: highly ordered and
relatively simple. It seems however that preferred extremals can correspond only to small pertur-
bations of these extremals resulting by topological condensation of C'Py type vacuum extremals
and through topological condensation to larger space-time sheets. Dcop, = 3 is the analog of spin
glass and liquid crystal phases, extremely complex but highly organized by the properties of the
generalized Beltrami fields. This phase could be seen as the boundary between chaos and order and
corresponds to life emerging in the interaction of magnetic bodies with bio-matter. It is possible
only in a finite temperature interval (note however the p-adic hierarchy of critical temperatures)
and characterized by chirality just like life.

The original proposal was that D(C'P,) = 4 phase is completely chaotic. This is not true if
the reduction to almost topological QFT takes place. This phase must correspond to Maxwellian
phase with a vanishing Kahler current as concluded already earlier. Various isometry currents are
however proportional to the instanton current and conserved along the flow lines of the instanton
current whose flow parameter extends to a global coordinate. Hence a completely chaotic phase is
not in question even in this case.

2.1.5 Specific extremals of Kahler action

The study of extremals of Kéahler action represents more than decade old layer in the development
of TGD.

1. The huge vacuum degeneracy is the most characteristic feature of Kéhler action (any 4-
surface having C'P, projection which is Legendre sub-manifold is vacuum extremal, Legendre
sub-manifolds of C'P, are in general 2-dimensional). This vacuum degeneracy is behind the
spin glass analogy and leads to the p-adic TGD. As found in the second part of the book,
various particle like vacuum extremals also play an important role in the understanding of
the quantum TGD.

2. The so called CP; type vacuum extremals have finite, negative action and are therefore an
excellent candidate for real particles whereas vacuum extremals with vanishing Kahler action
are candidates for the virtual particles. These extremals have one dimensional M* projection,
which is light like curve but not necessarily geodesic and locally the metric of the extremal
is that of C'Py: the quantization of this motion leads to Virasoro algebra. Space-times with
topology C'Po#C Py#...C' P, are identified as the generalized Feynman diagrams with lines
thickened to 4-manifolds of ”thickness” of the order of C' P, radius. The quantization of the
random motion with light velocity associated with the C' P, type extremals in fact led to the
discovery of Super Virasoro invariance, which through the construction of the configuration
space geometry, becomes a basic symmetry of quantum TGD.

3. There are also various non-vacuum extremals.

(a) String like objects, with string tension of same order of magnitude as possessed by the
cosmic strings of GUTs, have a crucial role in TGD inspired model for the galaxy for-
mation and in the TGD based cosmology.
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(b) The so called massless extremals describe non-linear plane waves propagating with the
velocity of light such that the polarization is fixed in given point of the space-time
surface. The purely TGD:eish feature is the light like Kéhler current: in the ordinary
Maxwell theory vacuum gauge currents are not possible. This current serves as a source
of coherent photons, which might play an important role in the quantum model of
bio-system as a macroscopic quantum system.

(¢) In the so called Maxwell phase, ordinary Maxwell equations for the induced Kéhler
field would be satisfied in an excellent approximation. It is however far from clear
whether this kind of extremals exist. Their non-existence would actually simplify the
theory enormously since all extremals would have quantal character. The recent view
indeed is that Maxwell phase makes sense only as as genuinely many-sheeted structure
and solutions of Maxwell’s equation appear only at the level of effective space-time
obtained by replacing many-sheeted space-time with Minkowski space with effective
metric determined as a sum of Minkowski metric and sum over the deviations of the
induced metrices of space-time sheets from Minkowski metric. Gauge potentials in
effective space-time are determined in the same manner. Since the gauge potentials sum
up, it is possible to understand how field configurations of Maxwell’s theory emerge at
this limit.

2.1.6 The weak form of electric-magnetic duality and modification of
Kahler action

The newest results discussed in the last section about the weak form of electric-magnetic duality
suggest strongly that Beltrami property is general and together with the weak form of electric-
magnetic duality allows a reduction of quantum TGD to almost topological field theory with Kéahler
function allowing expression as a Chern-Simons term.

Generalized Beltrami property leads to a rather explicit construction of the general solution of
field equations based on the hydrodynamic picture implying that single particle quantum numbers
are conserved along flow lines defined by the instanton current. The construction generalizes also
to the fermionic sector and there are reasons to hope that TGD is completely integrable theory.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found at http://www.tgdtheory.fi/
cmaphtml.html [L9]. Pdf representation of same files serving as a kind of glossary can be found
at http://www.tgdtheory.fi/tgdglossary.pdf [L10]. The topics relevant to this chapter are
given by the following list.

e Classical TGD [L14]

e Topological field quantization [L33]

Identification of preferred extremals of Kaehler action [L25]

TGD and GRT [L31]

Holography [L.23]

4-D spin glass degeneracy [L11]

2.2 General considerations

The solution families of field equations studied in this chapter were found already during eighties.
The physical interpretation turned out to be the the really tough problem. What is the principle
selecting preferred extremals of Kahler action as analogs of Bohr orbits assigning to 3-surface X3
a unique space-time surface X4(X3)? Does Equivalence Principle hold true and if so, in what
sense? These have been the key questions. The realization that light-like 3-surfaces X} associated
with the light-like wormhole throats at which the signature of the induced metric changes from
Minkowskian to Euclidian led to the formulation of quantum TGD in terms of second quantized
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induced spinor fields at these surfaces. Together with the notion of number theoretical compact-
ification this approach allowed to identify the conditions characterizing the preferred extremals.
What is remarkable that these conditions are consistent with what is known about extremals.

Also a connection with string models emerges and partial understanding of the space-time
realization of Equivalence Principle suggests itself. However, much more general argument allows
to understand how GRT space-time appears from the many-sheeted space-time of TGD (see fig.
http://www.tgdtheory.fi/appfigures/manysheeted. jpg or fig. 9 in the appendix of this book)
as effective concept [K81]: this more general view is not in conflict with the much earlier proposal
discussed below.

In this section the theoretical background behind field equations is briefly summarized. I will
not repeat the discussion of previous two chapters [K35, K36] summarizing the general vision about
many-sheeted space-time, and consideration will be restricted to those aspects of vision leading to
direct predictions about the properties of preferred extremals of Kéhler action.

2.2.1 Number theoretical compactification and M?® — H duality

The notion of hyper-quaternionic and octonionic manifold makes sense but it not plausible that
H = M* x CP;, could be endowed with a hyper-octonionic manifold structure. Situation changes
if H is replaced with hyper-octonionic M®. Suppose that X* C M? consists of hyper-quaternionic
and co-hyper-quaternionic regions. The basic observation is that the hyper-quaternionic sub-spaces
of M® with a fixed hyper-complex structure (containing in their tangent space a fixed hyper-
complex subspace M? or at least one of the light-like lines of M?) are labeled by points of C'P;.
Hence each hyper-quaternionic and co-hyper-quaternionic four-surface of M8 defines a 4-surface of
M* x CP,. One can loosely say that the number-theoretic analog of spontaneous compactification
occurs: this of course has nothing to do with dynamics.

This picture was still too naive and it became clear that not all known extremals of Kahler
action contain fixed M2 C M* or light-like line of M? in their tangent space.

1. The first option represents the minimal form of number theoretical compactification. M?® is
interpreted as the tangent space of H. Only the 4-D tangent spaces of light-like 3-surfaces
X} (wormhole throats or boundaries) are assumed to be hyper-quaternionic or co-hyper-
quaternionic and contain fixed M? or its light-like line in their tangent space. Hyper-
quaternionic regions would naturally correspond to space-time regions with Minkowskian
signature of the induced metric and their co-counterparts to the regions for which the signa-
ture is Euclidian. What is of special importance is that this assumption solves the problem
of identifying the boundary conditions fixing the preferred extremals of Kéahler action since
in the generic case the intersection of M? with the 3-D tangent space of X} is 1-dimensional.
The surfaces X*(X #) € M® would be hyper-quaternionic or co-hyper-quaternionic but would
not allow a local mapping between the 4-surfaces of M® and H.

2. One can also consider a more local map of X*(X}) C H to X*(X}*) € M8. The idea is to
allow M? C M* C M?® to vary from point to point so that S? = SO(3)/SO(2) characterizes
the local choice of M? in the interior of X*. This leads to a quite nice view about strong
geometric form of M® — H duality in which M?® is interpreted as tangent space of H and
X4(X3?) c M?® has interpretation as tangent for a curve defined by light-like 3-surfaces at
X} and represented by X*(X}?) C H. Space-time surfaces X*(X}?) C M® consisting of
hyper-quaternionic and co-hyper-quaternionic regions would naturally represent a preferred
extremal of E* Kahler action. The value of the action would be same as C'P, Kéhler action.
M8 — H duality would apply also at the induced spinor field and at the level of WCW. The
possibility to assign M?(x) C M* to each point of M* projection Pys(X*(X}})) is consistent
with what is known about extremals of Kahler action with only one exception: CP; type
vacuum extremals. In this case M? can be assigned to the normal space.

3. Strong form of M® — H duality satisfies all the needed constraints if it represents Kihler
isometry between X*(X7?) C M® and X*(X) C H. This implies that light-like 3-surface is
mapped to light-like 3-surface and induced metrics and Kahler forms are identical so that
also Kéhler action and field equations are identical. The only differences appear at the level
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of induced spinor fields at the light-like boundaries since due to the fact that gauge potentials
are not identical.

. The map of X C H — X C M® would be crucial for the realization of the number theo-

retical universality. M® = M* x E* allows linear coordinates as those preferred coordinates
in which the points of imbedding space are rational/algebraic. Thus the point of X* C H is
algebraic if it is mapped to algebraic point of M® in number theoretic compactification. This
of course restricts the symmetry groups to their rational/algebraic variants but this does not
have practical meaning. Number theoretical compactification could thus be motivated by
the number theoretical universality.

. The possibility to use either M8 or H picture might be extremely useful for calculational

purposes. In particular, M?® picture based on SO(4) gluons rather than SU(3) gluons could
perturbative description of low energy hadron physics. The strong SO(4) symmetry of low
energy hadron physics can be indeed seen direct experimental support for the M — H duality.

Number theoretical compactification has quite deep implications for quantum TGD and is

actually responsible for most of the progress in the understanding of the mathematical structure
of quantum TGD. A very powerful prediction is that preferred extremals should allow slicings to
either stringy world sheets or dual partonic 2-surfaces as well as slicing by light-like 3-surfaces.
Both predictions are consistent with what is known about extremals.

1. If the distribution of planes M?(z) is integrable, it is possible to slice X*(X?) to a union of

2-dimensional surfaces having interpretation as string world sheets and dual 2-dimensional
copies of partonic surfaces X2. This decomposition defining 242 Kaluza-Klein type structure
could realize quantum gravitational holography and might allow to understand Equivalence
Principle at space-time level in the sense that dimensional reduction defined by the integral
of Kéhler action over the 2-dimensional space labeling stringy world sheets gives rise to the
analog of stringy action and one obtains string model like description of quantum TGD as
dual for a description based on light-like partonic 3-surfaces. String tension is not however
equal to the inverse of gravitational constant as one might naively expect but the connection
is more delicate. As already mentioned, TGD-GRT connection and EP can be understood
at general level only from very general arguments [K81].

. Second implication is the slicing of X*(X 13) to light-like 3-surfaces Y13 "parallel” to X 13 Also

this slicing realizes quantum gravitational holography if one requires General Coordinate
Invariance in the sense that the Dirac determinant differs for two 3-surfaces Yl3 in the slicing
only by an exponent of a real part of a holomorphic function of WCW complex coordinates
giving no contribution to the Kéhler metric.

. The square of the Dirac determinant would be equal to the modulus squared for the exponent

of vacuum functional and would be formally defined as the product of conformal weights
assignable to the modes of the Dirac operator at string world sheets at the ends of strings
at partonic 2-surfaces defining the ends of Y>. The detailed definition requires to specify
what one means with the conformal weights assignable with the modes of the Kédhler-Dirac
operator.

. The localization of the modes of Kéhler-Dirac operator to 2-D surfaces (string world sheets

and possibly partonic 2-surfaces) [K94] following from the condition that electromagnetic
charges of the modes is well-defined is very strong restriction and reduces Dirac determinant
to a product of Dirac determinants assignable with these 2-surfaces.

2.2.2 Dirac determinant as exponent of Kahler action for preferred ex-

tremal

An attractive hypothesis is that Dirac determinant reduces to the vacuum functional identifiable
as exponent of Kéahler action Sk for a preferred extremal came first. The contribution from
Fuclidian regions corresponds to Kahler function and that from Minkowskian regions serves as
analog of Minkowskian action defining Morse function at the level of WCW.
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There is no hope of reducing Kéhler action to Dirac action since Kéhler action and Kéahler-
Dirac action are in completely democratic position since Kahler-Dirac gamma matrices are defined
in terms of the canonical momentumd densities for Kéhler action. The value of Kéhler coupling
strength is however expected to follow from the condition that Dirac determinant equals to vacuum
functional.

1. The realization that well-definedness of em charge requires the localization of the modes of
induced spinor field to string world sheets or partonic 2-surfaces was an important step in
process trying to make the notion of Dirac determinant more concrete [K94]. Dirac determi-
nants reduce to those assignable to string world sheets and possibly also partonic 2-surfaces
and would naturally correspond to square roots of determinants defined by the products of
the eigenvalues of the mass squared operator for incoming on mass shell states and given by
stringy mass formula. Zeta function regularization should allow to defined these determinants
and one can hope that it reduces to the exponent of Kahler action for preferred extremal.
Thus coupling constant evolution might allow a reduction to string model type description.

2. If weak form of electric magnetic duality and by j - A = 0 condition for Kéhler current
and gauge potential in the interior of space-time sheets are satisfied, Kahler action reduces
to Chern-Simons terms at light-like partonic orbits and space-like 3-surfaces at the ends of
space-time surface. Induced metric would apparently disappear from the action in accordance
with the idea about TGD as almost topological QFT. In order to obtain perturbation theory
one must add Chern-Simons term to partonic orbits such that it compensates the contribution
of Kéhler action. This term has also fermionic counterparts and means that the Kéhler-Dirac
action reduces to Chern-Simons Dirac action. If spinor modes are generalized eigen modes
of C-S-D Dirac operator with eigenvalues of p*~,. where p¥ is the virtual momentum at
fermion line identified as boundary string world sheet, one obtains ordinary massless Dirac
propagator.

Measurement interaction terms would be completely analogous to those fixing the values of
observables in thermodynamics and thus Lagrange multiplier terms fixing the values of certain
classical conserved charges in Cartan algebra to their quantal counterparts. By supersymmetry
this would give rise to measurement interaction term in Kéahler-Dirac action at the space-like ends
of the space-time surface and this term would give additional term to the the boundary conditions
of Kéhler Dirac equation. Typically the massless incoming states would generate mass due to the
Lagrange multiplier terms.

In absence of measurement interaction terms one would have I'™W¥ = pF~, U = 0 where I'™
is the normal component for Kéhler-Dirac gamma matrix vector and depends on Kahler action
and p* is four-momentum assignable to the fundamental fermion associated with fermionic string.
Lagrange multiplier terms imply that I'" is replaced with its sum with the 3-D modified Dirac
operator defined by the constraint terms.

(" 4+ 3 AL, Da)¥ =0,
where ); refers to i:th conserved charge.

2.2.3 Preferred extremal property as classical correlate for quantum
criticality, holography, and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first
variation of the modified Dirac operator Dk defined by Kéahler action vanishes. This is equivalent
with the vanishing of the second variation of Kahler action -at least for the variations corresponding
to dynamical symmetries having interpretation as dynamical degrees of freedom which are below
measurement resolution and therefore effectively gauge symmetries. The natural identification
would be as conformal symmetries. The weaker condition would mean that the inner product
defined by the integral of D,dLx /OhXh* over the space-time surface vanishes for the deformations
defining dynamical symmetries but the field equations are not satisfied completely generally. The
weaker condition would mean that the inner product defined by the integral of D,OLx /OhESh*
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over the space-time surface vanishes for the deformations defining dynamical symmetries but the
field equations are not satisfied completely generally.

The vanishing of the second variation in interior of X*4(X?) is what corresponds exactly to
quantum criticality so that the basic vision about quantum dynamics of quantum TGD would
lead directly to a precise identification of the preferred extremals. Something which I should have
noticed for more than decade ago!

For instance, the natural expectation is that the number of critical deformations is infinite
and corresponds to conformal symmetries naturally assignable to criticality. The number n of
conformal equivalence classes of the deformations can be finite and n would naturally relate to
the hierarchy of Planck constants h.s; = n x h (see fig. http://www.tgdtheory.fi/appfigures/
planckhierarchy. jpg, which is also in the appendix of this book).

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X*(X}}) vanishing at the intersections of X*(X?) with the light-like bound-
aries of causal diamonds CD would represent behavior variables. At least the vacuum ex-
tremals of Kéhler action would represent extremals for which the second variation vanishes
identically (the ”tip” of the multi-furcation set).

2. The zero modes of Kahler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality
(or holography or quantum classical correspondence) meaning that the configuration space
metric is determined by the data coming from partonic 2-surfaces X? at intersections of X}
with boundaries of CD, the interiors of 3-surfaces X? at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the
Kéhler metric of WCW represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the WCW metric. Quantum classical
correspondence requires 1-1 correspondence between zero modes and these variables. This
would be essentially holography stating that the 2-D ”causal boundary” X? of X3(X?) codes
for the interior. Preferred extremal property identified as criticality condition would realize
the holography by fixing the values of zero modes once X2 is known and give rise to the
holographic correspondence X2 — X3(X?). The values of behavior variables determined by
extremization would fix then the space-time surface X*(X?) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture.
Quantum criticality, quantum classical correspondence, holography, and preferred extremal
property would all represent more or less the same thing. One must of course be very cautious
since the boundary conditions at X 13 involve normal derivative and might bring in delicacies
forcing to modify the simplest heuristic picture.

The basic question is whether number theoretic view about preferred extremals imply absolute
minimization or something analogous to it.

1. The number theoretic conditions defining preferred extremals are purely algebraic and make
sense also p-adically and this is enough since p-adic variants of field equations make sense
although the notion of Kahler action does not make sense as integral. Despite this the
identification of the vacuum functional as exponent of Kéahler function as Dirac determinant
allows to define the exponent of Kéahler function as a p-adic number [K19] .
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2. The general objection against all extremization principles is that they do not make sense
p-adically since p-adic numbers are not well-ordered.

3. These observations do not encourage the idea about equivalence of the two approaches. On
the other hand, real and p-adic sectors are related by algebraic continuation and it could be
quite enough if the equivalence were true in real context alone.

The finite-dimensional analogy allows to compare absolute minimization and criticality with
each other.

1. Absolute minimization would select the branch of Thom’s catastrophe surface with the small-
est value of potential function for given values of control variables. In general this value would
not correspond to criticality since absolute minimization says nothing about the values of
control variables (zero modes).

2. Criticality forces the space-time surface to belong to the bifurcation set and thus fixes the
values of control variables, that is the interior of 3-surface assignable to the partonic 2-
surface, and realized holography. If the catastrophe has more than N = 3 sheets, several
preferred extremals are possible for given values of control variables fixing X?(X?) unless one
assumes that absolute minimization or some other criterion is applied in the bifurcation set.
In this sense absolute minimization might make sense in the real context and if the selection
is between finite number of alternatives is in question, it should be possible carry out the
selection in number theoretically universal manner.

It must be emphasized that there are several proposals for what preferred extremal property
could mean. For instance, one can consider the identification of space-time surface as quaternionic
sub-manifold meaning that tangent space of space-time surface can be regarded as quaternionic
sub-manifold of complexified octonions defining tangent space of imbedding space. One manner
to define ”quaternionic sub-manifold” is by introducing octonionic representation of imbedding
space gamma matrices identified as tangent space vectors. It must be also assumed that the
tangent space contains a preferred complex (commutative) sub-space at each point and defining
an integrable distribution having identification as string world sheet (also slicing of space-time
sheet by string world sheets can be considered). Associativity and commutativity would define
the basic dynamical principle. A closely related approach is based on so called Hamilton-Jacobi
structure [K11] defining also this kind of slicing and the approaches could be equivalent. A further
approach is based on the identification of preferred extremal property as quantum criticality [K11].

2.2.4 Can one determine experimentally the shape of the space-time
surface?

The question 'Can one determine experimentally the shape of the space-time surface?’ does not
relate directly to the topic of this chapter in technical sense, and the only excuse for its inclusion
is the title of this section plus the fact that the general conceptual framework behind quantum
TGD assumes an affirmative answer to this question. If physics were purely classical physics, op-
erationalism in the strong sense of the word would require that one can experimentally determine
the shape of the space-time as a surface of the imbedding space with arbitrary accuracy by mea-
suring suitable classical observables. In quantum physics situation is considerably more complex
and quantum effects are both a blessing and a curse.

Measuring classically the shape of the space-time surface

Consider first the purely classical situation to see what is involved.

1. All classical gauge fields are expressible in terms of C' P, coordinates and their space-time
gradients so that the measurement of four field quantities with some finite resolution in some
space-time volume could in principle give enough information to deduce the remaining field
quantities. The requirement that space-time surface corresponds to an extremal of Kéahler
action gives a further strong consistency constraint and one can in principle test whether this
constraint is satisfied. A highly over-determined system is in question.
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2. The freedom to choose the space-time coordinates freely causes complications and it seems
that one must be able to determine also the distances between the points at which the field
quantities are determined. At purely classical Riemannian level this boils down to the mea-
surement of the induced metric defining classical gravitational field. In macroscopic length
scales one could base the approach to iterative procedure in which one starts from the as-
sumption that the coordinates used are Minkowski coordinates and gravitational corrections
are very weak.

3. The measurement of induced Kéhler form in some space-time volume determines space-time
surface only modulo canonical transformations of C'P, and isometries of the imbedding space.
If one measures classical electromagnetic field, which is not canonical invariant in general case,
with some precision, one can determine to what kind of surface space-time region corresponds
apart from the action of the isometries of H.

Quantum measurement of the shape of the space-time surface

In practice the measurement of the shape of the space-time surface is necessarily a bootstrap
procedure based on the model for space-time region and on the requirement of internal consistency.
Many-sheeted space-time and quantum phenomena produce considerable complications but also
provide universal measurement standards.

Consider first how quantum effects could help to measure classical fields and distances.

1. The measurement of distances by measuring first induced metric at each point of space-time
sheet is rather unpractical procedure. Many-sheeted space-time however comes in rescue here.
p-Adic length scale hypothesis provides a hierarchy of natural length scales and one can use
p-adic length and time scales as natural units of length and time: space-time sheets serve
as meter sticks. For instance, length measurement reduces in principle to a finite number of
operations using various space-time sheets with standardized lengths given by p-adic length
scales. Also various transition frequencies and corresponding wavelengths provide universal
time and length units. Atomic clock provides a standard example of this kind of time unit.
A highly nontrivial implication is the possibility to deduce the composition of distant star
from its spectral lines. Without p-adic length scale hypothesis the scales for the mass spectra
of the elementary particles would be variable and atomic spectra would vary from point to
point in TGD universe.

Do the p-adic length scales correspond to the length units of the induced metric or of Mi
metric? If the topological condensation a meter stick space-time sheet at a larger space-time
sheet does not stretch the meter stick but only bends it, the length topologically condensed
meter stick in the induced metric equals to its original length measured using Mfi metric.

2. If superconducting order parameters are expressible in terms of the C'P, coordinates (there
is evidence for this, see the chapter ”Macroscopic quantum phenomena and C' P, geometry”),
one might determine directly the C'P» coordinates as functions of Minkowski coordinates and
this would allow to estimate all classical fields directly and thus to deduce strong consistency
constraints.

3. At quantum level only the fluxes of the classical fields through surface areas with some
minimum size determined by the length scale resolution can be measured. In case of magnetic
fields the quantization of the magnetic flux simplifies the situation dramatically. Topological
field quantization quite generally modifies the measurement of continuous field variables to
the measurement of fluxes. Interestingly, the construction of WCW geometry uses as WCW
coordinates various electric and magnetic fluxes over 2-dimensional cross sections of 3-surface.

Quantum effects introduce also difficulties and restrictions.

1. Canonical transformations localized with respect to the boundary of the light cone or more
general light like surfaces act as isometries of WCW and one can determine the space-time
surface only modulo these isometries. Even more, only the values of the non-quantum fluctu-
ating zero modes characterizing the shape and size of the space-time surface are measurable
with arbitrary precision in quantum theory. At the level of conscious experience quantum
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fluctuating degrees of freedom correspond to sensory qualia like color having no classical
geometric content.

2. Space-time surface is replaced by a new one in each quantum jump (or rather the superpo-
sition of perceptively equivalent space-time surfaces). Only in the approximation that the
change of the space-time region in single quantum jump is negligible, the measurement of the
shape of space-time surface makes sense. The physical criterion for this is that dissipation
is negligible. The change of the space-time region in single quantum jump can indeed be
negligible if the measurement is performed with a finite resolution.

3. Conscious experience of self is an average over quantum jumps defining moments of con-
sciousness. In particular, only the average increment of the zero modes is experienced and
this means that one cannot fix the space-time surface apart from canonical transformation
affecting the zero modes. Again the notion of measurement resolution comes in rescue.

4. The possibility of coherent states of photons and gravitons brings in a further quantum com-
plication since the effective classical em and gravitational fields are superpositions of classical
field and the order parameter describing the coherent state. In principle the extremely strong
constraints between the classical field quantities allow to measure both the order parameters
of the coherent phases and classical fields.

Quantum holography and the shape of the space-time surface

If the Dirac determinant asssognable to the mass squared eigenvalue spectrum of the modified
Dirac operator Dx (X?) equals to the exponent of Kihler action of a preferred extremal, it is fair
to say that a lot of information about the shape of the space-time surface is coded to physical
observables, which eigenvalues indeed represent. Quantum gravitational holography due to the
Bohr orbit like character of space-time surface reduces the amount of information needed. Only a
finite number of eigenvalues is involved and the eigen modes are associated with the 3-D light-like
wormhole throats rather than with the space-time surface itself. If the eigenvalues were known or
could be measured with infinite accuracy, one could in principle fix the boundary conditions at X}
and solve field equations determining the preferred extremal of K&hler action.

What is of course needed is the complete knowledge of the light-like 3-surfaces X;'. Needless
to say, in practice a complete knowledge of Xl3 is impossible since measurement resolution is
finite. The notion number theoretic braid provides a precise realization for the finite measurement
accuracy at space-time level. At the level of WCW spinors fields (world of classical worlds) just
the fact that the number of eigenvalues is finite is correlate for the finite measurement accuracy.
Furthermore, quantum states are actually quantum superpositions of 3-surfaces, which means that
one can only speak about quantum average space-time surface for which the phase factors coding
for the quantum numbers of elementary particles assigned to the strands of number theoretic
braids are stationary so that correlation of classical gauge charges with quantum gauge charges is
obtained.

2.3 General view about field equations

In this section field equations are deduced and discussed in general level. The fact that the di-
vergence of the energy momentum tensor, Lorentz 4-force, does not vanish in general, in principle
makes possible the mimicry of even dissipation and of the second law. For asymptotic self orga-
nization patterns for which dissipation is absent the Lorentz 4-force must vanish. This condition
is guaranteed if Kéahler current is proportional to the instanton current in the case that CP;
projection of the space-time sheet is smaller than four and vanishes otherwise. An attractive iden-
tification for the vanishing of Lorentz 4-force is as a condition equivalent with the selection of
preferred extremal of Kéahler action. This condition implies that covariant divergence of energy
momentum tensor vanishes and in General Relativity context this leads to Einstein’s equations. If
preferred extremals correspond to absolute minima this principle would be essentially equivalent
with the second law of thermodynamics. There are however could reasons to keep the identification
of preferred extremely property open.
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2.3.1 Field equations

The requirement that Ké&hler action is stationary leads to the following field equations in the
interior of the four-surface

Dg(T*PhE) — j*J%0,h' =0,
1
T = J”an—Zg“BJWJW . (2.3.1)

Here T*% denotes the traceless canonical energy momentum tensor associated with the Kéhler
action. An equivalent form for the first equation is

TPHE, —  j(IS R+ TRoaRY) =0 .
HEs = Dgo.h" . (2.3.2)

H 2 5 denotes the components of the

second fundamental form and j* = DgJ*? is the gauge current associated with the Kihler
field.
On the boundaries of X* and at wormhole throats the field equations are given by the expression

0Lk

oE = T"P9gh* — (T Pogh* + J5)8.h") =0 . (2.3.3)

At wormhole throats problems are caused by the vanishing of metric determinant implying that
contravariant metric is singular.
For M* coordinates boundary conditions are satisfied if one assumes

™ = 0 (2.3.4)

stating that there is no flow of four-momentum through the boundary component or wormhole
throat. This means that there is no energy exchange between Euclidian and Minkowskian regions
so that Euclidian regions provide representations for particles as autonomous units. This is in
accordance with the general picture [K36] . Note that momentum transfer with external world
necessarily involves generalized Feynman diagrams also at classical level.

For C'P, coordinates the boundary conditions are more delicate. The construction of WCW
spinor structure [K19] led to the conditions

J™ = 0 does not and should not follow from this condition since contravariant metric is singular.
It seems that limiting procedure is necessary in order to see what comes out.

The condition that Kéahler electric charge defined as a gauge flux is non-vanishing would require
that the quantity J"",/g is finite (here r refers to the light-like coordinate of X 2). Also 9" \/9a
which is analogous to gravitational flux if n is interpreted as time coordinate could be non-vanishing.
These conditions are consistent with the above condition if one has

Jni =0, gni =0, Jir =0, gir =0,
(2.3.6)
IR0 kT, gR=0 kAT, JUVGEAO, gUVGE A .

The interpretation of this conditions is rather transparent.

1. The first two conditions state that covariant form of the induced Kéhler electric field is
in direction normal to X} and metric separate into direct sum of normal and tangential
contributions. Fifth and sixth condition state the same in contravariant form for k # n.
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2. Third and fourth condition state that the induced Kéahler field at X 13 is purely magnetic and
that the metric of 2} reduces to a block diagonal form. The reduction to purely magnetic
field is of obvious importance as far as the understanding of the generalized eigen modes of
the modified Dirac operator is considered [K19] .

3. The last two conditions must be understood as a limit and # means only the possibility of
non-vanishing Kéihler gauge flux or analog of gravitational flux through X?.

4. The vision inspired by number theoretical compactification allows to identify r and n in terms
of the light-like coordinates assignable to an integrable distribution of planes M?(x) assumed
to be assignable to M* projection of X4(Xl3). Later it will be found that Hamilton-Jacobi
structure assignable to the extremals indeed means the existence of this kind of distribution
meaning slicing of X4(X}) both by string world sheets and dual partonic 2-surfaces as well
as by light-like 3-surfaces Y;3.

5. The physical analogy for the situation is the surface of an ideal conductor. It would not be
surprising that these conditions are satisfied by all induced gauge fields.

2.3.2 Topologization and light-likeness of the Kahler current as alterna-
tive manners to guarantee vanishing of Lorentz 4-force

The general solution of 4-dimensional Einstein-Yang Mills equations in Euclidian 4-metric relies on
self-duality of the gauge field, which topologizes gauge charge. This topologization can be achieved
by a weaker condition, which can be regarded as a dynamical generalization of the Beltrami
condition. An alternative manner to achieve vanishing of the Lorentz 4-force is light-likeness of
the Kéahler 4-current. This does not require topologization.

Topologization of the Kéhler current for Dcp, = 3: covariant formulation

The condition states that Kéahler 4-current is proportional to the instanton current whose diver-
gence is instanton density and vanishes when the dimension of C'P, projection is smaller than
four: Dep, < 4. For Deop, = 2 the instanton 4-current vanishes identically and topologization is
equivalent with the vanishing of the Kéhler current.

If the simplest vision about light-like 3-surfaces as basic dynamical objects is accepted Deop, =
2, corresponds to a non-physical situation and only the deformations of these surfaces - most
naturally resulting by gluing of C'P; type vacuum extremals on them - can represent preferred
extremals of Ké&hler action. One can however speak about Dcp, = 2 phase if 4-surfaces are
obtained are obtained in this manner.

=D = X =1 x P A5 (2.3.7)

Here the function v is an arbitrary function 1 (s*) of CP, coordinates s* regarded as functions of
space-time coordinates. It is essential that ¢ depends on the space-time coordinates through the
C P, coordinates only. Hence the representation as an imbedded gauge field is crucial element of
the solution ansatz.

The field equations state the vanishing of the divergence of the 4-current. This is trivially true
for instanton current for Dep, < 4. Also the contraction of Vi (depending on space-time coor-
dinates through CP, coordinates only) with the instanton current is proportional to the winding
number density and therefore vanishes for Dep, < 4.

The topologization of the Kahler current guarantees the vanishing of the Lorentz 4-force. In-
deed, using the self-duality condition for the current, the expression for the Lorentz 4-force reduces
to a term proportional to the instanton density:

ja af = "/’Xj?JaB
= Px e, Asdup (2.3.8)
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Since all vector quantities appearing in the contraction with the four-dimensional permutation
tensor are proportional to the gradients of C' P, coordinates, the expression is proportional to the
instanton density, and thus winding number density, and vanishes for Do p, < 4.

Remarkably, the topologization of the Kéhler current guarantees also the vanishing of the term
o J*9,s* in the field equations for C'P; coordinates. This means that field equations reduce in
both Mi and C' P, degrees of freedom to

T*PHE; = 0. (2.3.9)

These equations differ from the equations of minimal surface only by the replacement of the metric
tensor with energy momentum tensor. The earlier proposal that quaternion conformal invariance
in a suitable sense might provide a general solution of the field equations could be seen as a
generalization of the ordinary conformal invariance of string models. If the topologization of the
Kahler current implying effective dimensional reduction in C'P» degrees of freedom is consistent
with quaternion conformal invariance, the quaternion conformal structures must differ for the
different dimensions of C'P, projection.

Topologization of the Kéahler current for Do p, = 3: non-covariant formulation

In order to gain a concrete understanding about what is involved it is useful to repeat these
arguments using the 3-dimensional notation. The components of the instanton 4-current read in
three-dimensional notation as

7, —FExA+¢B, pr=B-4 . (2.3.10)

The self duality conditions for the current can be written explicitly using 3-dimensional notation
and read

Vx?—@tﬁ = }
V-E = p=upr . (2.3.11)

For a vanishing electric field the self-duality condition for Ké&hler current reduces to the Beltrami
condition

VxB=aB , a=19¢ . (2.3.12)

The vanishing of the divergence of the magnetic field implies that « is constant along the field lines
of the flow. When ¢ is constant and A is time independent, the condition reduces to the Beltrami
condition with oo = ¢ = constant, which allows an explicit solution [B54] .

One can check also the vanishing of the Lorentz 4-force by using 3-dimensional notation. Lorentz
3-force can be written as

prE+jxB=9yB-AE+v¢ (Ex A+ ¢B)xB=0 . (2.3.13)

The fourth component of the Lorentz force reads as

j-E=yB-E4+¢(ExA+¢B)-E=0 . (2.3.14)

The remaining conditions come from the induction law of Faraday and could be guaranteed by
expressing E and B in terms of scalar and vector potentials.

The density of the Kéhler electric charge of the vacuum is proportional to the the helicity
density of the so called helicity charge p = ¥p; = ¢ B - A. This charge is topological charge in the
sense that it does not depend on the induced metric at all. Note the presence of arbitrary function
1) of C' Py coordinates.
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Further conditions on the functions appearing in the solution ansatz come from the 3 inde-
pendent field equations for C' P, coordinates. What is remarkable that the generalized self-duality
condition for the Kéhler current allows to understand the general features of the solution ansatz
to very high degree without any detailed knowledge about the detailed solution. The question
whether field equations allow solutions consistent with the self duality conditions of the current
will be dealt later. The optimistic guess is that the field equations and topologization of the Kéhler
current relate to each other very intimately.

Vanishing or light likeness of the Kihler current guarantees vanishing of the Lorentz
4-force for Dcp, =2

For Dcp, = 2 one can always take two C' P, coordinates as space-time coordinates and from this
it is clear that instanton current vanishes so that topologization gives a vanishing Kahler current.
In particular, the Beltrami condition V x B = aB is not consistent with the topologization of the
instanton current for Dep, = 2.

Dcp, = 2 case can be treated in a coordinate invariant manner by using the two coordinates
of C'P, projection as space-time coordinates so that only a magnetic or electric field is present
depending on whether the gauge current is time-like or space-like. Light-likeness of the gauge
current provides a second manner to achieve the vanishing of the Lorentz force and is realized
in case of massless extremals having Dcp, = 2: this current is in the direction of propagation
whereas magnetic and electric fields are orthogonal to it so that Beltrami conditions is certainly
not satisfied.

Under what conditions topologization of Kéahler current yields Beltrami conditions?

Topologization of the Kahler 4-current gives rise to magnetic Beltrami fields if either of the following
conditions is satisfied.

1. The E x A term contributing besides B term to the topological current vanishes. This
requires that F and A are parallel to each other

E = VO®-9A=03A (2.3.15)

This condition is analogous to the Beltrami condition. Now only the 3-space has as its
coordinates time coordinate and two spatial coordinates and and B is replaced with A. Since
E and B are orthogonal, this condition implies B - A = 0 so that Kihler charge density is
vanishing.

2. The vector E x A is parallel to B.

ExA = BB (2.3.16)

The condition is consistent with the orthogonality of E and B but implies the orthogonality
of A and B so that electric charge density vanishes

In both cases vector potential fails to define a contact structure since B - A vanishes (contact
structures are discussed briefly below), and there exists a global coordinate along the field lines
of A and the full contact structure is lost again. Note however that the Beltrami condition for
magnetic field means that magnetic field defines a contact structure irrespective of whether B - A
vanishes or not. The transition from the general case to Beltrami field would thus involve the
replacement

(A,B) —»vx (B,))
induced by the rotor.
One must of course take these considerations somewhat cautiously since the inner product
depends on the induced 4-metric and it might be that induced metric could allow small vacuum
charge density and make possible genuine contact structure.
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Hydrodynamic analogy

The field equations of TGD are basically hydrodynamic equations stating the local conservation of
the currents associated with the isometries of the imbedding space. Therefore it is intriguing that
Beltrami fields appear also as solutions of ideal magnetohydrodynamics equations and as steady
solutions of non-viscous incompressible flow described by Euler equations [B23] .

In hydrodynamics the role of the magnetic field is taken by the velocity field. This raises the
idea that the incompressible flow could occur along the field lines of some natural vector field. The
considerations of the last section show that the instanton current defines a universal candidate
as far as the general solution of the field equations is considered. All conserved currents defined
by the isometry charges would be parallel to the instanton current: one can say each flow line
of instanton current is a carrier of conserved quantum numbers. Perhaps even the flow lines of
an incompressible hydrodynamic flow could in reasonable approximation correspond to those of
instanton current.

The conservation laws are satisfied for each flow line separately and therefore it seems that
one cannot have the analog of viscous hydrodynamic flow in this framework. One the other hand,
quantum classical correspondence requires that also dissipative effects have space-time correlates.
Does something go badly wrong?

The following argument suggests a way out of the problem. Dissipation is certaily due to the
quantum jumps at scales below that associated with causal diamond (CD) associated with the
observer and is thus assignable to sub-CDs. The quantum jumps for sub-CDs would eventually
lead to a thermal ensemble of sub-CDs.

The usual description of dissipation in terms of viscocity and similar parameters emerges at
the GRT-QFT limit of TGD replacing in long length scales the many-sheeted space-time (see fig.
http://www.tgdtheory.fi/appfigures/manysheeted. jpg or fig. 9 in the appendix of this book)
with a piece of Minkowski space with effective metric defined by the sum of Minkowski metric and
deviations of the induced metrics of space-time sheets from Minkowski metric. This lumping of
space-time sheets means that induced gauge fields and gravitational fields from various space-
time sheet sum up and become random (by central limit theorems). Thus locally the dynamics
is dissipation free for individual space-time sheets and dissipation emerges at the level of GRT
space-time carrying effective metric and effective gauge fields.

The stability of generalized Beltrami fields

The stability of generalized Beltrami fields is of high interest since unstable points of space-time
sheets are those around which macroscopic changes induced by quantum jumps are expected to be
localized.

1. Contact forms and contact structures

The stability of Beltrami flows has been studied using the theory of contact forms in three-
dimensional Riemann manifolds contact . Contact form is a one-form A (that is covariant vector
field A, ) with the property A AdA # 0. In the recent case the induced Kéhler gauge potential A,
and corresponding induced Kahler form J,g for any 3-sub-manifold of space-time surface define
a contact form so that the vector field A* = g®# A is not orthogonal with the magnetic field
B* = eaﬁ‘sjﬁ,y. This requires that magnetic field has a helical structure. Induced metric in turn
defines the Riemann structure.

If the vector potential defines a contact form, the charge density associated with the topologized
Kahler current must be non-vanishing. This can be seen as follows.

1. The requirement that the flow lines of a one-form X, defined by the vector field X* as
its dual allows to define a global coordinate x varying along the flow lines implies that
there is an integrating factor ¢ such that ¢X = dz and therefore d(¢X) = 0. This implies
dlog(¢) AN X = —dX. From this the necessary condition for the existence of the coordinate x
is X AdX = 0. In the three-dimensional case this gives X - (V x X) = 0.

2. This condition is by definition not satisfied by the vector potential defining a contact form
so that one cannot identify a global coordinate varying along the flow lines of the vector
potential. The condition B - A # 0 states that the charge density for the topologized Kéhler
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current is non-vanishing. The condition that the field lines of the magnetic field allow a
global coordinate requires B -V x B = 0. The condition is not satisfied by Beltrami fields
with a # 0. Note that in this case magnetic field defines a contact structure.

Contact structure requires the existence of a vector £ satisfying the condition A(£) = 0. The
vector field € defines a plane field, which is orthogonal to the vector field A%. Reeb field in turn
is a vector field for which A(X) = 1 and dA(X;) = 0 hold true. The latter condition states the
vanishing of the cross product X x B so that X is parallel to the Kahler magnetic field B* and
has unit projection in the direction of the vector field A%. Any Beltrami field defines a Reeb field
irrespective of the Riemannian structure.

2. Stability of the Beltrami flow and contact structures

Contact structures are used in the study of the topology and stability of the hydrodynamical
flows [B35] , and one might expect that the notion of contact structure and its proper generalization
to the four-dimensional context could be useful in TGD framework also. An example giving some
idea about the complexity of the flows defined by Beltrami fields is the Beltrami field in R3
possessing closed orbits with all possible knot and link types simultaneously [B35]!

Beltrami flows associated with Euler equations are known to be unstable [B35] . Since the
flow is volume preserving, the stationary points of the Beltrami flow are saddle points at which
also vorticity vanishes and linear instabilities of Navier-Stokes equations can develop. From the
point of view of biology it is interesting that the flow is stabilized by vorticity which implies also
helical structures. The stationary points of the Beltrami flow correspond in TGD framework to
points at which the induced Kéhler magnetic field vanishes. They can be unstable by the vacuum
degeneracy of Kahler action implying classical non-determinism. For generalized Beltrami fields
velocity and vorticity (both divergence free) are replaced by Kéhler current and instanton current.

More generally, the points at which the Kahler 4-current vanishes are expected to represent
potential instabilities. The instanton current is linear in Kéhler field and can vanish in a gauge
invariant manner only if the induced Kéhler field vanishes so that the instability would be due to
the vacuum degeneracy also now. Note that the vanishing of the Kahler current allows also the
generation of region with Dop, = 4. The instability of the points at which induce Kahler field
vanish is manifested in quantum jumps replacing the generalized Beltrami field with a new one
such that something new is generated around unstable points. Thus the regions in which induced
Kahler field becomes weak are the most interesting ones. For example, unwinding of DNA could
be initiated by an instability of this kind.

2.3.3 How to satisfy field equations?

The topologization of the Kihler current guarantees also the vanishing of the term j*.J*9,s* in
the field equations for C'P; coordinates. This means that field equations reduce in both Mj‘r and
C P, degrees of freedom to

T*PHE, = 0. (2.3.17)

These equations differ from the equations of minimal surface only by the replacement of the metric
tensor with energy momentum tensor. The following approach utilizes the properties of Hamilton
Jacobi structures of M fi introduced in the study of massless extremals and contact structures of
CP, emerging naturally in the case of generalized Beltrami fields.

String model as a starting point

String model serves as a starting point.

1. In the case of Minkowskian minimal surfaces representing string orbit the field equations
reduce to purely algebraic conditions in light cone coordinates (u,v) since the induced met-
ric has only the component g,,, whereas the second fundamental form has only diagonal
components HF, and HE, .
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2. For Euclidian minimal surfaces (u,v) is replaced by complex coordinates (w,w) and field
equations are satisfied because the metric has only the component ¢“% and second funda-
mental form has only components of type H¥,, and HE_. The mechanism should generalize
to the recent case.

The general form of energy momentum tensor as a guideline for the choice of coordi-
nates

Any 3-dimensional Riemann manifold allows always a orthogonal coordinate system for which the
metric is diagonal. Any 4-dimensional Riemann manifold in turn allows a coordinate system for
which 3-metric is diagonal and the only non-diagonal components of the metric are of form ¢**. This
kind of coordinates might be natural also now. When E and B are orthogonal, energy momentum
tensor has the form

BB 0 EB
0 E*+B? 0 0

r=|, 0 s g (2.3.18)
EB 0 0 E?-B?

2

in the tangent space basis defined by time direction and longitudinal direction E x B, and transver-
sal directions E and B. Note that T is traceless.

The optimistic guess would be that the directions defined by these vectors integrate to three
orthogonal coordinates of X% and together with time coordinate define a coordinate system con-
taining only g% as non-diagonal components of the metric. This however requires that the fields
in question allow an integrating factor and, as already found, this requires V x X - X = 0 and this
is not the case in general.

Physical intuition suggests however that X* coordinates allow a decomposition into longitudinal
and transversal degrees freedom. This would mean the existence of a time coordinate ¢ and
longitudinal coordinate z the plane defined by time coordinate and vector £ x B such that the
coordinates u = t — z and v = t 4 z are light like coordinates so that the induced metric would have
only the component g*¥ whereas ¢"¥ and ¢g“* would vanish in these coordinates. In the transversal
space-time directions complex space-time coordinate coordinate w could be introduced. Metric
could have also non-diagonal components besides the components g*® and ¢“*.

Hamilton Jacobi structures in M_‘f_

Hamilton Jacobi structure in Mﬁ can understood as a generalized complex structure combing
transversal complex structure and longitudinal hyper-complex structure so that notion of holo-
morphy and Kéhler structure generalize.

1. Denote by m' the linear Minkowski coordinates of M*. Let (ST,S~, E', E?) denote local
coordinates of Mj‘; defining a local decomposition of the tangent space M* of Mj‘; into a direct,
not necessarily orthogonal, sum M?* = M? @ E? of spaces M? and E?. This decomposition
has an interpretation in terms of the longitudinal and transversal degrees of freedom defined
by local light-like four-velocities v+ = VS and polarization vectors ¢; = VE? assignable to
light ray. Assume that E? allows complex coordinates w = E!' +iE? and w = E' —iE?. The
simplest decomposition of this kind corresponds to the decomposition (ST =u=1+2,5" =
v=t—z,w=x+iYy,W=1a—1iy).

2. In accordance with this physical picture, ST and S~ define light-like curves which are normals
to light-like surfaces and thus satisfy the equation:
(VS1)2 =0

The gradients of S+ are obviously analogous to local light like velocity vectors v = (1,7) and
¥ = (1,—7). These equations are also obtained in geometric optics from Hamilton Jacobi
equation by replacing photon’s four-velocity with the gradient V.S: this is consistent with
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the interpretation of massless extremals as Bohr orbits of em field. Sy = constant surfaces
can be interpreted as expanding light fronts. The interpretation of S+ as Hamilton Jacobi
functions justifies the term Hamilton Jacobi structure.

The simplest surfaces of this kind correspond to ¢ = z and ¢t = —z light fronts which are
planes. They are dual to each other by hyper complex conjugation u =t — 2z - v =t + z.
One should somehow generalize this conjugation operation. The simplest candidate for the
conjugation ST — S~ is as a conjugation induced by the conjugation for the arguments:
St — z,t + z,m,y) — S™(t — 2,t + z,3,y) = ST(t + 2,t — 2,2, —y) so that a dual pair
is mapped to a dual pair. In transversal degrees of freedom complex conjugation would be
involved.

3. The coordinates (St,w,w) define local light cone coordinates with the line element having

the form
ds® = g¢,_dSTdS™ + guwdwdw
+ g+wdS+dw + g+@dS+dﬁ
+  g_wdSTdw+ g_z5dS” dw . (2.3.19)

Conformal transformations of M_‘f_ leave the general form of this decomposition invariant.
Also the transformations which reduces to analytic transformations w — f(w) in transver-
sal degrees of freedom and hyper-analytic transformations S*™ — f(ST),S~ — f(S7) in
longitudinal degrees of freedom preserve this structure.

4. The basic idea is that of generalized Kéahler structure meaning that the notion of Kéahler
function generalizes so that the non-vanishing components of metric are expressible as

Juw = 8108@—[{ s g+—- = aS+8S_K )
(2.3.20)
Gut = 005+ K | ggt = Og0s+ K .

for the components of the metric. The expression in terms of Kahler function is coordinate
invariant for the same reason as in case of ordinary Kéhler metric. In the standard light-cone
coordinates the Kéahler function is given by

K=wywyg+uv , wo=xz+iy , u=t—z , v=t+z . (2.3.21)

The Christoffel symbols satisfy the conditions

{owt=0., {f}=0. (2.3.22)

w w

If energy momentum tensor has only the components T%% and 77—, field equations are
satisfied in MZ degrees of freedom.

5. The Hamilton Jacobi structures related by these transformations can be regarded as being
equivalent. Since light-like 3- surface is, as the dynamical evolution defined by the light
front, fixed by the 2-surface serving as the light source, these structures should be in one-one
correspondence with 2-dimensional surfaces with two surfaces regarded as equivalent if they
correspond to different time=constant snapshots of the same light front, or are related by
a conformal transformation of Mj‘_. Obviously there should be quite large number of them.
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Note that the generating two-dimensional surfaces relate also naturally to quaternion con-
formal invariance and corresponding Kac Moody invariance for which deformations defined
by the M* coordinates as functions of the light-cone coordinates of the light front evolution
define Kac Moody algebra, which thus seems to appear naturally also at the level of solutions
of field equations.

The task is to find all possible local light cone coordinates defining one-parameter families 2-
surfaces defined by the condition S; = constant, i = + or = —, dual to each other and expanding
with light velocity. The basic open questions are whether the generalized Kahler function indeed
makes sense and whether the physical intuition about 2-surfaces as light sources parameterizing
the set of all possible Hamilton Jacobi structures makes sense.

Hamilton Jacobi structure means the existence of foliations of the M* projection of X* by
2-D surfaces analogous to string word sheets labeled by w and the dual of this foliation defined
by partonic 2-surfaces labeled by the values of S;. Also the foliation by light-like 3-surfaces Y;?
labeled by Sy with Sg serving as light-like coordinate for Y;? is implied. This is what number
theoretic compactification and M® — H duality predict when space-time surface corresponds to
hyper-quaternionic surface of M8 [K36, K77] .

Contact structure and generalized Kéahler structure of CP, projection

In the case of 3-dimensional C' P, projection it is assumed that one can introduce complex coordi-
nates (£, €) and the third coordinate s. These coordinates would correspond to a contact structure
in 3-dimensional C'P, projection defining transversal symplectic and Kéahler structures. In these
coordinates the transversal parts of the induced C'P, Kahler form and metric would contain only
components of type g,z and J,z. The transversal Kéahler field J,z would induce the Kahler
magnetic field and the components Jg,, and Jsz the Kéhler electric field.

It must be emphasized that the non-integrability of the contact structure implies that J cannot
be parallel to the tangent planes of s = constant surfaces, s cannot be parallel to neither A nor the
dual of J, and £ cannot vary in the tangent plane defined by J. A further important conclusion
is that for the solutions with 3-dimensional C' P, projection topologized Kéahler charge density is
necessarily non-vanishing by AAJ # 0 whereas for the solutions with D¢ p, = 2 topologized Kéhler
current vanishes.

Also the C'P, projection is assumed to possess a generalized Kéahler structure in the sense that
all components of the metric except sss are derivable from a Kéahler function by formulas similar
to M case.

Sww = awaEK s Sws = 8wasK , Sws = %GSK . (2323)

Generalized Kéhler property guarantees that the vanishing of the Christoffel symbols of C' P, (rather
than those of 3-dimensional projection), which are of type { 5kE}'

{(s} = 0. (2.3.24)

Here the coordinates of C'P> have been chosen in such a manner that three of them correspond to
the coordinates of the projection and fourth coordinate is constant at the projection. The upper
index k refers also to the C' P, coordinate, which is constant for the C' P, projection. If energy
momentum tensor has only components of type 77~ and T%Y, field equations are satisfied even
when if non-diagonal Christoffel symbols of C'P, are present. The challenge is to discover solution
ansatz, which guarantees this property of the energy momentum tensor.

A stronger variant of Kéhler property would be that also s, vanishes so that the coordinate lines
defined by s would define light like curves in C'P,. The topologization of the Kéhler current however
implies that C' P, projection is a projection of a 3-surface with strong Kahler property. Using
(5,€,€,87) as coordinates for the space-time surface defined by the ansatz (w = w(¢,s), ST =
ST (s)) one finds that gss must be vanishing so that stronger variant of the Kahler property holds
true for S~ = constant 3-surfaces.
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The topologization condition for the Kahler current can be solved completely generally in
terms of the induced metric using (¢, &, s) and some coordinate of Mfﬁ, call it z*, as space-time
coordinates. Topologization boils down to the conditions

05(J*P\/g) = O0for ac{€€ s},
g #£0 . (2.3.25)

Thus 3-dimensional empty space Maxwell equations and the non-orthogonality of X* coordinate
lines and the 3-surfaces defined by the lift of the C'P; projection.

A solution ansatz yielding light-like current in Dcp, = 3 case

The basic idea is that of generalized Kéahler structure and solutions of field equations as maps or
deformations of canonically imbedded Mi respecting this structure and guaranteeing that the only
non-vanishing components of the energy momentum tensor are 7 and 7°~ in the coordinates

(5755 S’ Si)

1. The coordinates (w, ST) are assumed to holomorphic functions of the C'P, coordinates (s, )

St =5%(s) , w=w(,s) . (2.3.26)

Obviously ST could be replaced with S~. The ansatz is completely symmetric with respect
to the exchange of the roles of (s,w) and (ST, £) since it maps longitudinal degrees of freedom
to longitudinal ones and transverse degrees of freedom to transverse ones.

2. Field equations are satisfied if the only non-vanishing components of the energy momentum
tensor are of type T¢¢ and T°~. The reason is that the C'P, Christoffel symbols for projection
and projections of M_‘f_ Christoffel symbols are vanishing for these lower index pairs.

3. By a straightforward calculation one can verify that the only manner to achieve the required
structure of energy momentum tensor is to assume that the induced metric in the coordinates
(£,€,8,57) has as non-vanishing components only Ieg and gs_

9ss =0, ges =0, gz, =0 . (2.3.27)

Obviously the space-time surface must factorize into an orthogonal product of longitudinal
and transversal spaces.

4. The condition guaranteeing the product structure of the metric is

Sss = m+wasw(€7 S)ass+(5) + m+ﬁasm(fa 3)8SS+(3) ’
Sse = My 0w (£)9sS(s) (2.3.28)

Sgg = m+w85w(§)835+(5) .

Thus the function of dynamics is to diagonalize the metric and provide it with strong Kahler
property. Obviously the C P, projection corresponds to a light-like surface for all values of
S~ so that space-time surface is foliated by light-like surfaces and the notion of generalized
conformal invariance makes sense for the entire space-time surface rather than only for its
boundary or elementary particle horizons.
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5. The requirement that the Kahler current is proportional to the instanton current means that
only the j~ component of the current is non-vanishing. This gives the following conditions

3G =05 Jg) =0, & /g=03(Jg) =0,

(2.3.29)

iTVg=08(JP/g) =0 .

Since J# vanishes, the condition
Vait=0s(JPg) = 0 (2.3.30)

is identically satisfied. Therefore the number of field equations reduces to three.
The physical interpretation of the solution ansatz deserves some comments.

1. The light-like character of the Kéhler current brings in mind C'P, extremals for which C'P;,
projection is light like. This suggests that the topological condensation of C'P» type extremal
occurs on Dop, = 3 helical space-time sheet representing zitterbewegung. In the case of
many-body system light-likeness of the current does not require that particles are massless if
particles of opposite charges can be present. Field tensor has the form (J¢¢, J¢~,.J¢7). Both
helical magnetic field and electric field present as is clear when one replaces the coordinates
(ST,87) with time-like and space-like coordinate. Magnetic field dominates but the presence
of electric field means that genuine Beltrami field is not in question.

2. Since the induced metric is product metric, 3-surface is metrically product of 2-dimensional
surface X? and line or circle and obeys product topology. If preferred extremals correspond
to asymptotic self-organization patterns, the appearance of the product topology and even
metric is not so surprising. Thus the solutions can be classified by the genus of X2. An
interesting question is how closely the explanation of family replication phenomenon in terms
of the topology of the boundary component of elementary particle like 3-surface relates to
this. The heaviness and instability of particles which correspond to genera g > 2 (sphere
with more than two handles) might have simple explanation as absence of (stable) Dop, = 3
solutions of field equations with genus g > 2.

3. The solution ansatz need not be the most general. Kahler current is light-like and already
this is enough to reduce the field equations to the form involving only energy momentum
tensor. Omne might hope of finding also solution ansétze for which Kéhler current is time-
like or space-like. Space-likeness of the Kéhler current might be achieved if the complex
coordinates (¢, €) and hyper-complex coordinates (ST, S~) change the role. For this solution
ansatz electric field would dominate. Note that the possibility that Kahler current is always
light-like cannot be excluded.

4. Suppose that C'P, projection quite generally defines a foliation of the space-time surface
by light-like 3-surfaces, as is suggested by the conformal invariance. If the induced metric
has Minkowskian signature, the fourth coordinate z* and thus also Kihler current must be
time-like or light-like so that magnetic field dominates. Already the requirement that the
metric is non-degenerate implies gs4 # 0 so that the metric for the £ = constant 2-surfaces
has a Minkowskian signature. Thus space-like Kéahler current does not allow the lift of the
C P, projection to be light-like.



2.3. General view about field equations 57

Are solutions with time-like or space-like Kahler current possible in Dcp, = 3 case?

As noticed in the section about number theoretical compactification, the flow of gauge currents
along slices Y;? of X*(X}}) "parallel” to X} requires only that gauge currents are parallel to ¥;* and
can thus space-like. The following ansatz gives good hopes for obtaining solutions with space-like
and perhaps also time-like Kéahler currents.

1. Assign to light-like coordinates coordinates (T, Z) by the formula T = St + S~ and Z =
St — S~. Space-time coordinates are taken to be (£, s) and coordinate Z. The solution
ansatz with time-like Kéhler current results when the roles of 7" and Z are changed. It will
however found that same solution ansatz can give rise to both space-like and time-like Kahler
current.

2. The solution ansatz giving rise to a space-like Kéhler current is defined by the equations

T=T(Zs), w=w(,s) . (2.3.31)

If T depends strongly on Z, the gzz component of the induced metric becomes positive and
Kahler current time-like.

3. The components of the induced metric are

9zz =mzz +mrr0zTOT | gzs=mprdzToT
Jss = Sss + mTTasTasT ; Juww = Sww + mwﬁaﬁwagm y (2332)
gs¢ = Ss¢ 95t = Sst -

Topologized Kahler current has only Z-component and 3-dimensional empty space Maxwell’s
equations guarantee the topologization.

In C'P, degrees of freedom the contractions of the energy momentum tensor with Christoffel
symbols vanish if 7%, T¢* and T%¢ vanish as required by internal consistency. This is guaranteed
if the condition

J¢ =0 (2.3.33)

holds true. Note however that .J £Z is non-vanishing. Therefore only the components T and T ZE,
T#¢ of energy momentum tensor are non-vanishing, and field equations reduce to the conditions

Oe(1€Vg) +02(1%/g) = 0,
0:(JE\/g) + 02(J%\Jg) = O . (2.3.34)

In the special case that the induced metric does not depend on z-coordinate equations reduce to
holomorphicity conditions. This is achieve if T' depends linearly on Z: T = aZ.

The contractions with M{ Christoffel symbols come from the non-vanishing of T#¢ and vanish
if the Hamilton Jacobi structure satisfies the conditions

{Ffut=0, {Ffzt=0,

{Zuwt=0, {Fm}=0

hold true. The conditions are equivalent with the conditions

(2.3.35)
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{Lut=0., {Lgr=0. (2.3.36)

These conditions possess solutions (standard light cone coordinates are the simplest example). Also
the second derivatives of T'(s, Z) contribute to the second fundamental form but they do not give
rise to non-vanishing contractions with the energy momentum tensor. The cautious conclusion is
that also solutions with time-like or space-like Kéhler current are possible.

Dcp, =4 case

The preceding discussion was for Dop, = 3 and one should generalize the discussion to Dop, =4
case.

1. Hamilton Jacobi structure for M fi is expected to be crucial also now.

2. One might hope that for Dop, = 4 the Kéhler structure of C'P, defines a foliation of C'Py by
3-dimensional contact structures. This requires that there is a coordinate varying along the
field lines of the normal vector field X defined as the dual of the three-form AAdA = AN J.
By the previous considerations the condition for this reads as dX = d(log¢) A X and implies
X AdX = 0. Using the self duality of the Kihler form one can express X as X* = J¥' A;. By
a brief calculation one finds that X AdX o X holds true so that (somewhat disappointingly)
a foliation of C'P, by contact structures does not exist.

For Dcp, = 4 case Kéhler current vanishes and this case corresponds to what I have called
earlier Maxwellian phase since empty space Maxwell’s equations would be indeed satisfied, provided
this phase exists at all. It however seems that Maxwell phase is probably realized differently.

1. Solution ansatz with a 3-dimensional Mi projection

The basic idea is that the complex structure of C'P, is preserved so that one can use complex
coordinates (£1,¢2) for C' P in which C'P, Christoffel symbols and energy momentum tensor have
automatically the desired properties. This is achieved the second light like coordinate, say v, is
non-dynamical so that the induced metric does not receive any contribution from the longitudinal
degrees of freedom. In this case one has

ST =8T(1,¢%) | w=w(¢,£) , S =constant . (2.3.37)

The induced metric does possesses only components of type g;7 if the conditions

Itw =0, gw=0. (2.3.38)

This guarantees that energy momentum tensor has only components of type T in coordinates
(¢',€?) and their contractions with the Christoffel symbols of CP, vanish identically. In M$
degrees of freedom one must pose the conditions

{wit=0. {z}=0, {&}=0. (2.3.39)
on Christoffel symbols. These conditions are satisfied if the the Mfﬁ metric does not depend on
St:

8+mkl = 0. (2340)

This means that m_,, and m_z can be non-vanishing but like m, _ they cannot depend on S*.
The second derivatives of ST appearing in the second fundamental form are also a source of
trouble unless they vanish. Hence ST must be a linear function of the coordinates £*:
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St o= aftr@mE . (2.3.41)

Field equations are the counterparts of empty space Maxwell equations j¢ = 0 but with Mi
coordinates (u,w) appearing as dynamical variables and entering only through the induced metric.
By holomorphy the field equations can be written as

9;(J7g) =0, 9:(J7/g) =0 (2.3.42)

and can be interpreted as conditions stating the holomorphy of the contravariant Kahler form.

What is remarkable is that the M fi projection of the solution is 3-dimensional light like surface
and that the induced metric has Euclidian signature. Light front would become a concrete geo-
metric object with one compactified dimension rather than being a mere conceptualization. One
could see this as topological quantization for the notion of light front or of electromagnetic shock
wave, or perhaps even as the realization of the particle aspect of gauge fields at classical level.

If the latter interpretation is correct, quantum classical correspondence would be realized very
concretely. Wave and particle aspects would both be present. One could understand the interac-
tions of charged particles with electromagnetic fields both in terms of absorption and emission of
topological field quanta and in terms of the interaction with a classical field as particle topologically
condenses at the photonic light front.

For CP; type extremals for which Mff_ projection is a light like curve correspond to a special
case of this solution ansatz: transversal M_‘f_ coordinates are constant and ST is now arbitrary
function of C'P; coordinates. This is possible since Mi projection is 1-dimensional.

2. Are solutions with a 4-dimensional Mj‘; projection possible?

The most natural solution ansatz is the one for which C'P, complex structure is preserved
so that energy momentum tensor has desired properties. For four-dimensional Mi projection
this ansatz does not seem to make promising since the contribution of the longitudinal degrees
of freedom implies that the induced metric is not anymore of desired form since the components
Gij = My (0 S10e1 S~ +my_0¢iS™0¢; ST) are non-vanishing.

1. The natural dynamical variables are still Minkowski coordinates (w,w,S*,S™) for some
Hamilton Jacobi structure. Since the complex structure of C'P, must be given up, CP;
coordinates can be written as (£, s,r) to stress the fact that only ”"one half” of the Kahler
structure of C' P, is respected by the solution ansatz.

2. The solution ansatz has the same general form as in Do p, = 3 case and must be symmetric
with respect to the exchange of M_‘f_ and C'P; coordinates. Transverse coordinates are mapped
to transverse ones and longitudinal coordinates to longitudinal ones:

(ST,87) = (ST(s,7),5 (s5,7)) , w=w() . (2.3.43)

This ansatz would describe ordinary Maxwell field in M_‘f_ since the roles of M_?_ coordinates
and C' P, coordinates are interchangeable.

It is however far from obvious whether there are any solutions with a 4-dimensional M_?_ pro-
jection. That empty space Maxwell’s equations would allow only the topologically quantized light
fronts as its solutions would realize quantum classical correspondence very concretely.

The recent view conforms with this intuition. The Maxwell phase is certainly physical notion
but would correspond effective fields experience by particle in many-sheeted space-time. Test
particle topological condenses to all the space-time sheets with projection to a given region of
Minkowski space and experiences essentially the sum of the effects caused by the induced gauge
fields at different sheets. This applies also to gravitational fields interpreted as deviations from
Minkowski metric.
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The transition to GRT and QFT picture means the replacement of many-sheeted space-time
with piece of Minkowski space with effective metric defined as the sum of Minkowski metric and
deviations of the induced metrics of space-time sheets from Minkowski metric. Effective gauge po-
tentials are sums of the induced gauge potentials. Hence the rather simple topologically quantized
induced gauge fields associated with space-time sheets become the classical fields in the sense of
Maxwell’s theory and gauge theories.

Dcp, =2 case

Hamilton Jacobi structure for M? is assumed also for Do p, = 2, whereas the contact structure for
CPsisin Deop, = 2 case replaced by the induced Kéhler structure. Topologization yields vanishing
Kahler current. Light-likeness provides a second manner to achieve vanishing Lorentz force but
one cannot exclude the possibility of time- and space-like Kahler current.

1. Solutions with vanishing Kdhler current

1. String like objects, which are products X2 x Y2 C Mj‘_ x C'Py of minimal surfaces Y2 of M_‘i
with geodesic spheres S? of C' P, and carry vanishing gauge current. String like objects allow
considerable generalization from simple Cartesian products of X2 x Y2 C M* x S2. Let
(w,w, ST, S7) define the Hamilton Jacobi structure for Mj‘r. w = constant surfaces define
minimal surfaces X2 of Mi. Let £ denote complex coordinate for a sub-manifold of C' P, such
that the imbedding to C' P is holomorphic: (£1,€2) = (f1(€), f2(€)). The resulting surface
Y? C CP, is a minimal surface and field equations reduce to the requirement that the Kihler
current vanishes: 6E(J55 v/92) = 0. One-dimensional strings are deformed to 3-dimensional
cylinders representing magnetic flux tubes. The oscillations of string correspond to waves
moving along string with light velocity, and for more general solutions they become TGD
counterparts of Alfven waves associated with magnetic flux tubes regarded as oscillations of
magnetic flux lines behaving effectively like strings. It must be emphasized that Alfven waves
are a phenomenological notion not really justified by the properties of Maxwell’s equations.

2. Also electret type solutions with the role of the magnetic field taken by the electric field are
possible. (&, &, u,v) would provide the natural coordinates and the solution ansatz would be
of the form

(s,7) = (s(u,v),r(u,v)) , &= constant , (2.3.44)

and corresponds to a vanishing Kéahler current.

3. Both magnetic and electric fields are necessarily present only for the solutions carrying non-
vanishing electric charge density (proportional to B - A). Thus one can ask whether more
general solutions carrying both magnetic and electric field are possible. As a matter fact, one
must first answer the question what one really means with the magnetic field. By choosing
the coordinates of 2-dimensional C'P, projection as space-time coordinates one can define
what one means with magnetic and electric field in a coordinate invariant manner. Since the
CP, Kéhler form for the C' P, projection with Deop, = 2 can be regarded as a pure Kéhler
magnetic field, the induced Kahler field is either magnetic field or electric field.

The form of the ansatz would be

(s,r) = (s,7) (u,v,w, @) , &= constant . (2.3.45)

As a matter fact, C P, coordinates depend on two properly chosen M* coordinates only.
1. Solutions with light-like Kdhler current

There are large classes of solutions of field equations with a light-like Kahler current and 2-
dimensional C' P, projection.
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1. Massless extremals for which C'P, coordinates are arbitrary functions of one transversal
coordinate e = f(w,w) defining local polarization direction and light like coordinate u of
M{ and carrying in the general case a light like current. In this case the holomorphy does
not play any role.

2. The string like solutions thickened to magnetic flux tubes carrying TGD counterparts of
Alfven waves generalize to solutions allowing also light-like Kéhler current. Also now Kéahler
metric is allowed to develop a component between longitudinal and transversal degrees of
freedom so that Kéahler current develops a light-like component. The ansatz is of the form

gl:fz(g) ) w:w(g) , ST =sT S+:s++f(§f) .

Only the components gi¢ and g 4E of the induced metric receive contributions from the
modification of the solution ansatz. The contravariant metric receives contributions to ¢—¢
and ¢g~¢ whereas g¢ and g remain zero. Since the partial derivatives 9¢0, h* and 858+hk
and corresponding projections of Christoffel symbols vanish, field equations are satisfied.
Kahler current develops a non-vanishing component j~. Apart from the presence of the
electric field, these solutions are highly analogous to Beltrami fields.

Could D¢p, =2 — 3 transition occur in rotating magnetic systems?

I have studied the imbeddings of simple cylindrical and helical magnetic fields in various applica-
tions of TGD to condensed matter systems, in particular in attempts to understand the strange
findings about rotating magnetic systems [K79] .

Let S? be the homologically non-trivial geodesic sphere of C'P, with standard spherical coordi-
nates (U = cos(0), ) and let (¢, p, ¢, z) denote cylindrical coordinates for a cylindrical space-time
sheet. The simplest possible space-time surfaces X* C Mfi x S? carrying helical Kihler magnetic
field depending on the radial cylindrical coordinate p, are given by:

U=U(p) , ®=no+kz ,
Jp¢ = 'I’LapU y Jpz = kapU . (2346)

This helical field is not Beltrami field as one can easily find. A more general ansatz corresponding
defined by

b =wt+kz+no

would in cylindrical coordinates give rise to both helical magnetic field and radial electric field
depending on p only. This field can be obtained by simply replacing the vector potential with its
rotated version and provides the natural first approximation for the fields associated with rotating
magnetic systems.

A non-vanishing vacuum charge density is however generated when a constant magnetic field is
put into rotation and is implied by the condition E = T x B stating vanishing of the Lorentz force.
This condition does not follow from the induction law of Faraday although Faraday observed this
effect first. This is also clear from the fact that the sign of the charge density depends on the
direction of rotation.

The non-vanishing charge density is not consistent with the vanishing of the Kéahler 4-current
and requires a 3-dimensional C'P, projection and topologization of the Kéhler current. Beltrami
condition cannot hold true exactly for the rotating system. The conclusion is that rotation induces
a phase transition Deop, = 2 — 3. This could help to understand various strange effects related to
the rotating magnetic systems [K79] . For instance, the increase of the dimension of C' P, projection
could generate join along boundaries contacts and wormhole contacts leading to the transfer of
charge between different space-time sheets. The possibly resulting flow of gravitational flux to
larger space-time sheets might help to explain the claimed antigravity effects.
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2.3.4 Dcp, = 3 phase allows infinite number of topological charges char-
acterizing the linking of magnetic field lines

When space-time sheet possesses a D = 3-dimensional C' P, projection, one can assign to it a non-
vanishing and conserved topological charge characterizing the linking of the magnetic field lines
defined by Chern-Simons action density A A dA/4x for induced Kéhler form. This charge can be
seen as classical topological invariant of the linked structure formed by magnetic field lines.

The topological charge can also vanish for Dcp, = 3 space-time sheets. In Darboux coordinates
for which Kihler gauge potential reads as A = P,dQ", the surfaces of this kind result if one has
Q? = f(Q') implying A = fdQ' , f = P1 + P2dg,Q* , which implies the condition 4 A dA = 0.
For these space-time sheets one can introduce Q! as a global coordinate along field lines of A and
define the phase factor exp(i f A, dzt) as a wave function defined for the entire space-time sheet.
This function could be interpreted as a phase of an order order parameter of super-conductor like
state and there is a high temptation to assume that quantum coherence in this sense is lost for
more general Dop, = 3 solutions.

Chern-Simons action is known as helicity in electrodynamics [B56] . Helicity indeed describes
the linking of magnetic flux lines as is easy to see by interpreting magnetic field as incompressible
fluid flow having A as vector potential: B =V x A. One can write A using the inverse of Vx as
A = (1/Vx)B. The inverse is non-local operator expressible as

L B = /dV’(T_T/) x B(r')

V x |r — 7|3

as a little calculation shows. This allows to write f A-B as

’ (r—r") ’
/dVA~B:/dVdVB(r)~ ( xB(r)) ,
|r— /|3
which is completely analogous to the Gauss formula for linking number when linked curves are
replaced by a distribution of linked curves and an average is taken.

For Dcop, = 3 field equations imply that Kéahler current is proportional to the helicity current
by a factor which depends on C'P, coordinates, which implies that the current is automatically
divergence free and defines a conserved charge for D = 3-dimensional C' P, projection for which
the instanton density vanishes identically. K&hler charge is not equal to the helicity defined by the
inner product of magnetic field and vector potential but to a more general topological charge.

The number of conserved topological charges is infinite since the product of any function of C' P,
coordinates with the helicity current has vanishing divergence and defines a topological charge. A
very natural function basis is provided by the scalar spherical harmonics of SU(3) defining Hamilto-
nians of C'P, canonical transformations and possessing well defined color quantum numbers. These
functions define and infinite number of conserved charges which are also classical knot invariants
in the sense that they are not affected at all when the 3-surface interpreted as a map from CP»
projection to M_‘i is deformed in M_‘f_ degrees of freedom. Also canonical transformations induced
by Hamiltonians in irreducible representations of color group affect these invariants via Poisson
bracket action when the U(1) gauge transformation induced by the canonical transformation cor-
responds to a single valued scalar function. These link invariants are additive in union whereas
the quantum invariants defined by topological quantum field theories are multiplicative.

Also non-Abelian topological charges are well-defined. One can generalize the topological cur-
rent associated with the Kéhler form to a corresponding current associated with the induced
electro-weak gauge fields whereas for classical color gauge fields the Chern-Simons form vanishes
identically. Also in this case one can multiply the current by C' P, color harmonics to obtain an
infinite number of invariants in Do p, = 3 case. The only difference is that A A dA is replaced by
Tr(AA(dA+2A N A/3)).

There is a strong temptation to assume that these conserved charges characterize colored quan-
tum states of the conformally invariant quantum theory as a functional of the light-like 3-surface
defining boundary of space-time sheet or elementary particle horizon surrounding wormhole con-
tacts. They would be TGD analogs of the states of the topological quantum field theory defined by
Chern-Simons action as highest weight states associated with corresponding Wess-Zumino-Witten
theory. These charges could be interpreted as topological counterparts of the isometry charges of
WCW defined by the algebra of canonical transformations of C'P;.
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The interpretation of these charges as contributions of light-like boundaries to WCW Hamil-
tonians would be natural. The dynamics of the induced second quantized spinor fields relates to
that of Kéhler action by a super-symmetry, so that it should define super-symmetric counterparts
of these knot invariants. The anti-commutators of these super charges cannot however contribute
to WCW Kabhler metric so that topological zero modes are in question. These Hamiltonians and
their super-charge counterparts would be responsible for the topological sector of quantum TGD.

2.3.5 Preferred extremal property and the topologization/light-likeness
of Kahler current?

The basic question is under what conditions the Kéahler current is either topologized or light-like
so that the Lorentz force vanishes. Does this hold for all preferred extremals of Kéhler action? Or
only asymptotically as suggested by the fact that generalized Beltrami fields can be interpreted as
asymptotic self-organization patterns, when dissipation has become insignificant. Or does topolo-
gization take place in regions of space-time surface having Minkowskian signature of the induced
metric? And what asymptotia actually means? Do absolute minima of Kéhler action correspond
to preferred extremals?

One can challenge the interpretation in terms of asymptotic self organization patterns assigned
to the Minkowskian regions of space-time surface.

1. Zero energy ontology challenges the notion of approach to asymptotia in Minkowskian sense
since the dynamics of light-like 3-surfaces is restricted inside finite volume CD C M* since the
partonic 2-surfaces representing their ends are at the light-like boundaries of causal diamond
in a given p-adic time scale.

2. One can argue that generic non-asymptotic field configurations have Dop, = 4, and would
thus carry a vanishing Kéahler four-current if Beltrami conditions were satisfied universally
rather than only asymptotically. j* = 0 would obviously hold true also for the asymptotic
configurations, in particular those with Do p, < 4 so that empty space Maxwell’s field equa-
tions would be universally satisfied for asymptotic field configurations with Dcop, < 4. The
weak point of this argument is that it is 3-D light-like 3-surfaces rather than space-time
surfaces which are the basic dynamical objects so that the generic and only possible case cor-
responds to Dop, = 3 for X?. It is quite possible that preferred extremal property implies
that Dcp, = 3 holds true in the Minkowskian regions since these regions indeed represent
empty space. Geometrically this would mean that the C'P, projection does not change as
the light-like coordinate labeling Yl3 varies. This conforms nicely with the notion of quantum
gravitational holography.

3. The failure of the generalized Beltrami conditions would mean that Kéahler field is completely
analogous to a dissipative Maxwell field for which also Lorentz force vanishes since j - E is
non-vanishing (note that isometry currents are conserved although energy momentum tensor
is not). Quantum classical correspondence states that classical space-time dynamics is by its
classical non-determinism able to mimic the non-deterministic sequence of quantum jumps
at space-time level, in particular dissipation in various length scales defined by the hierarchy
of space-time sheets. Classical fields would represent ”symbolically” the average dynamics,
in particular dissipation, in shorter length scales. For instance, vacuum 4-current would be
a symbolic representation for the average of the currents consisting of elementary particles.
This would seem to support the view that Dop, = 4 Minkowskian regions are present. The
weak point of this argument is that there is fractal hierarchy of length scales represented
by the hierarchy of causal diamonds (CDs) and that the resulting hierarchy of generalized
Feynman graphs might be enough to represent dissipation classically.

4. One objection to the idea is that second law realized as an asymptotic vanishing of Lorentz-
Kahler force implies that all space-like 3-surfaces approaching same asymptotic state have
the same value of Kéhler function assuming that the Kéhler function assignable to space-
like 3-surface is same for all space-like sections of X*(X}}) (assuming that one can realize
general coordinate invariance also in this sense). This need not be the case. In any case,
this need not be a problem since it would mean an additional symmetry extending general
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coordinate invariance. The exponent of Kéhler function would be highly analogous to a
partition function defined as an exponent of Hamiltonian with K&hler coupling strength
playing the role of temperature.

It seems that asymptotic self-organization pattern need not be correct interpretation for non-
dissipating regions, and the identification of light-like 3-surfaces as generalized Feynman diagrams
encourages an alternative interpretation.

1. M® — H duality states that also the H counterparts of co-hyper-hyperquaternionic surfaces
of M8 are preferred extremals of Kihler action. CP, type vacuum extremals represent the
basic example of these and a plausible conjecture is that the regions of space-time with
Euclidian signature of the induced metric represent this kind of regions. If this conjecture is
correct, dissipation could be assigned with regions having Euclidian signature of the induced
metric. This makes sense since dissipation has quantum description in terms of Feynman
graphs and regions of Euclidian signature indeed correspond to generalized Feynman graphs.
This argument would suggest that generalized Beltrami conditions or light-likeness hold true
inside Minkowskian regions rather than only asymptotically.

2. One could of course play language games and argue that asymptotia is with respect to the
FEuclidian time coordinate inside generalized Feynman graps and is achieved exactly when the
signature of the induced metric becomes Minkowskian. This is somewhat artificial attempt
to save the notion of asymptotic self-organization pattern since the regions outside Feynman
diagrams represent empty space providing a holographic representations for the matter at
X7 so that the vanishing of j*F,z is very natural.

3. What is then the correct identification of asymptotic self-organization pattern. Could corre-
spond to the negative energy part of the zero energy state at the upper light-like boundary
dM?* of CD? Or in the case of phase conjugate state to the positive energy part of the state
at 6M1? An identification consistent with the fractal structure of zero energy ontology and
TGD inspired theory of consciousness is that the entire zero energy state reached by a se-
quence of quantum jumps represents asymptotic self-organization pattern represented by the
asymptotic generalized Feynman diagram or their superposition. Biological systems repre-
sent basic examples about self-organization, and one cannot avoid the questions relating to
the relationship between experience and geometric time. A detailed discussion of these points
can be found in [K6] .

Absolute minimization of Kéhler action was the first guess for the criterion selecting preferred
extremals. Absolute minimization in a strict sense of the word does not make sense in the p-adic
context since p-adic numbers are not well-ordered, and one cannot even define the action integral
as a p-adic number. The generalized Beltrami conditions and the boundary conditions defining
the preferred extremals are however local and purely algebraic and make sense also p-adically. If
absolute minimization reduces to these algebraic conditions, it would make sense.

2.3.6 Generalized Beltrami fields and biological systems

The following arguments support the view that generalized Beltrami fields play a key role in living
systems, and that Dcp, = 2 corresponds to ordered phase, Dcp, = 3 to spin glass phase and
D¢ p, =4 to chaos, with Do p, = 3 defining life as a phenomenon at the boundary between order
and chaos. If the criteria suggested by the number theoretic compactification are accepted, it is not
clear whether D¢ p, extremals can define preferred extremals of Kahler action. For instance, cosmic
strings are not preferred extremals and the Yl?’ associated with MEs allow only covariantly constant
right handed neutrino eigenmode of Dx (X?). The topological condensation of CP type vacuum
extremals around Dcp, = 2 type extremals is however expected to give preferred extremals and if
the density of the condensate is low enough one can still speak about Do p, = 2 phase. A natural
guess is also that the deformation of Dop, = 2 extremals transforms light-like gauge currents to
space-like topological currents allowed by D¢ p, = 3 phase.
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Why generalized Beltrami fields are important for living systems?

Chirality, complexity, and high level of organization make Dcp, = 3 generalized Beltrami fields
excellent candidates for the magnetic bodies of living systems.

1. Chirality selection is one of the basic signatures of living systems. Beltrami field is charac-
terized by a chirality defined by the relative sign of the current and magnetic field, which
means parity breaking. Chirality reduces to the sign of the function i appearing in the
topologization condition and makes sense also for the generalized Beltrami fields.

2. Although Beltrami fields can be extremely complex, they are also extremely organized. The
reason is that the function « is constant along flux lines so that flux lines must in the case of
compact Riemann 3-manifold belong to 2-dimensional o = constant closed surfaces, in fact
two-dimensional invariant tori [B23] .

For generalized Beltrami fields the function v is constant along the flow lines of the Kahler
current. Space-time sheets with 3-dimensional C'P, projection serve as an illustrative example.
One can use the coordinates for the C' P, projection as space-time coordinates so that one space-
time coordinate disappears totally from consideration. Hence the situation reduces to a flow
in a 3-dimensional sub-manifold of CP,. One can distinguish between three types of flow lines
corresponding to space-like, light-like and time-like topological current. The 2-dimensional ¢ =
constant invariant manifolds are sub-manifolds of CP,. Ordinary Beltrami fields are a special
case of space-like flow with flow lines belonging to the 2-dimensional invariant tori of C P,. Time-
like and light-like situations are more complex since the flow lines need not be closed so that the
2-dimensional ¥ = constant surfaces can have boundaries.

For periodic self-organization patterns flow lines are closed and ¥ = constant surfaces of C'P;,
must be invariant tori. The dynamics of the periodic flow is obtained from that of a steady flow by
replacing one spatial coordinate with effectively periodic time coordinate. Therefore topological
notions like helix structure, linking, and knotting have a dynamical meaning at the level of C'P;
projection. The periodic generalized Beltrami fields are highly organized also in the temporal
domain despite the potentiality for extreme topological complexity.

For these reasons topologically quantized generalized Beltrami fields provide an excellent can-
didate for a generic model for the dynamics of biological self-organization patterns. A natural
guess is that many-sheeted magnetic and Z° magnetic fields and their generalizations serve as
templates for the helical molecules populating living matter, and explain both chiral selection, the
complex linking and knotting of DNA and protein molecules, and even the extremely complex and
self-organized dynamics of biological systems at the molecular level.

The intricate topological structures of DNA, RNA, and protein molecules are known to have a
deep significance besides their chemical structure, and they could even define something analogous
to the genetic code. Usually the topology and geometry of bio-molecules is believed to reduce
to chemistry. TGD suggests that space-like generalized Beltrami fields serve as templates for the
formation of bio-molecules and bio-structures in general. The dynamics of bio-systems would in
turn utilize the time-like Beltrami fields as templates. There could even exist a mapping from the
topology of magnetic flux tube structures serving as templates for bio-molecules to the templates of
self-organized dynamics. The helical structures, knotting, and linking of bio-molecules would thus
define a symbolic representation, and even coding for the dynamics of the bio-system analogous to
written language.

Dcp, = 3 systems as boundary between Dcp, = 2 order and Dcp, =4 chaos
The dimension of C'P, projection is basic classifier for the asymptotic self-organization patterns.
1. Dcp, = 4 phase, dead matter, and chaos

Dcp, = 4 corresponds to the ordinary Maxwellian phase in which Kéahler current and charge
density vanish and there is no topologization of Kahler current. By its maximal dimension this
phase would naturally correspond to disordered phase, ordinary ”dead matter”. If one assumes
that Kihler charge corresponds to either em charge or Z° charge then the signature of this state
of matter would be em neutrality or Z° neutrality.
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2. Dcp, = 2 phase as ordered phase

By the low dimension of C'P» projection Dcp, = 2 phase is the least stable phase possible
only at cold space-time sheets. Kéahler current is either vanishing or light-like, and Beltrami fields
are not possible. This phase is highly ordered and much like a topological quantized version of
ferro-magnet. In particular, it is possible to have a global coordinate varying along the field lines
of the vector potential also now. The magnetic and Z° magnetic body of any system is a candidate
for this kind of system. Z° field is indeed always present for vacuum extremals having Dop, = 2
and the vanishing of em field requires that that sin?(fw ) (6w is Weinberg angle) vanishes.

3. Dcp, = 3 corresponds to living matter

D¢ p, = 3 corresponds to highly organized phase characterized in the case of space-like Kdhler
current by complex helical structures necessarily accompanied by topologized Kéahler charge density
o A-B # 0 and Kéhler current E x A+@B. For time like Kéhler currents the helical structures are
replaced by periodic oscillation patterns for the state of the system. By the non-maximal dimension
of C' P, projection this phase must be unstable against too strong external perturbations and cannot
survive at too high temperatures. Living matter is thus excellent candidate for this phase and it
might be that the interaction of the magnetic body with living matter makes possible the transition
from D¢ p, = 2 phase to the self-organizing Dcop, = 3 phase.

Living matter which is indeed populated by helical structures providing examples of space-like
Kahler current. Strongly charged lipid layers of cell membrane might provide example of time-like
Kahler current. Cell membrane, micro-tubuli, DNA, and proteins are known to be electrically
charged and Z° charge plays key role in TGD based model of catalysis discussed in [K33] . For
instance, denaturing of DNA destroying its helical structure could be interpreted as a transition
leading from D¢p, = 3 phase to Dcp, = 4 phase. The prediction is that the denatured phase
should be electromagnetically (or Z°) neutral.

Beltrami fields result when Kéahler charge density vanishes. For these configurations magnetic
field and current density take the role of the vector potential and magnetic field as far as the
contact structure is considered. For Beltrami fields there exist a global coordinate along the field
lines of the vector potential but not along those of the magnetic field. As a consequence, the
covariant consistency condition (9s — geA;)¥ = 0 frequently appearing in the physics of super
conducting systems would make sense along the flow lines of the vector potential for the order
parameter of Bose-Einstein condensate. If Beltrami phase is super-conducting, then the state of
the system must change in the transition to a more general phase. It is impossible to assign slicing
of 4-surface by 3-D surfaces labeled by a coordinate ¢ varying along the flow lines. This means
that one cannot speak about a continuous evolution of Schrodinger amplitude with ¢ playing the
role of time coordinate. One could perhaps say that the entire space-time sheet represents single
quantum event which cannot be decomposed to evolution. This would conform with the assignment
of macroscopic and macro-temporal quantum coherence with living matter.

The existence of these three phases brings in mind systems allowing chaotic de-magnetized
phase above critical temperature T, spin glass phase at the critical point, and ferromagnetic phase
below T,. Similar analogy is provided by liquid phase, liquid crystal phase possible in the vicinity of
the critical point for liquid to solid transition, and solid phase. Perhaps one could regard Dcp, = 3
phase and life as a boundary region between Dcp, = 2 order and Dcp, = 4 chaos. This would
naturally explain why life as it is known is possible in relatively narrow temperature interval.

Can one assign a continuous Schrédinger time evolution to light-like 3-surfaces?

Alain Connes wrote [A41] about factors of various types using as an example Schrodinger equation
for various kinds of foliations of space-time to time=constant slices. If this kind of foliation does
not exist, one cannot speak about time evolution of Schrédinger equation at all. Depending on the
character of the foliation one can have factor of type I, II, or III. For instance, torus with slicing
dxr = ady in flat coordinates, gives a factor of type I for rational values of a and factor of type II
for irrational values of a.

1. 8-D foliations and type III factors

Connes mentioned 3-D foliations V' which give rise to type III factors. Foliation property
requires a slicing of V' by a one-form v to which slices are orthogonal (this requires metric).
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1. The foliation property requires that v multiplied by suitable scalar is gradient. This gives
the integrability conditions dv = w A v, w = —d/¢p = —dlog(v)). Something proportional
to log(1)) can be taken as a third coordinate varying along flow lines of v: the flow defines a
continuous sequence of maps of 2-dimensional slice to itself.

2. If the so called Godbillon-Vey invariant defined as the integral of dw A w over V is non-
vanishing, factor of type IlI is obtained using Schrodinger amplitudes for which the flow lines
of foliation define the time evolution. The operators of the algebra in question are transversal
operators acting on Schrodinger amplitudes at each slice. Essentially Schrodinger equation in
3-D space-time would be in question with factor of type III resulting from the exotic choice
of the time coordinate defining the slicing.

2. What happens in case of light-like 3-surfaces?

In TGD light-like 3-surfaces are natural candidates for V' and it is interesting to look what
happens in this case. Light-likeness is of course a disturbing complication since orthogonality
condition and thus contravariant metric is involved with the definition of the slicing. Light-likeness
is not however involved with the basic conditions.

1. The one-form v defined by the induced K&hler gauge potential A defining also a braiding is a
unique identification for v. If foliation exists, the braiding flow defines a continuous sequence
of maps of partonic 2-surface to itself.

2. Physically this means the possibility of a super-conducting phase with order parameter sat-
isfying covariant constancy equation Dy = (d/dt —ieA)yp = 0. This would describe a supra
current flowing along flow lines of A.

3. If the integrability fails to be true, one cannot assign Schrodinger time evolution with the
flow lines of v. One might perhaps say that 3-surface behaves like single quantum event not
allowing slicing by a continuous Schrédinger time evolution.

4. The condition that the modes of the induced spinor field have well-defined em charge implies
that C' P, projection for the region of space-time in which induced spinor field is non-vanishing
is 2-dimensional. In the generic case a localization to 2-surfaces - string world sheets and
possibly partonic 2-surface. At light-like 3-surfaces this implies that modes are localized at
1-D curves so that the hydrodynamic picture is realized [K94].

3. Extremals of Kdhler action

Some comments relating to the interpretation of the classification of the extremals of K&hler
action by the dimension of their C'P, projection are in order. It has been already found that the
extremals can be classified according to the dimension D of the C'P, projection of space-time sheet
in the case that A, = 0 holds true.

1. For Dep, = 2 integrability conditions for the vector potential can be satisfied for A, = 0 so
that one has generalized Beltrami flow and one can speak about Schrédinger time evolution
associated with the flow lines of vector potential defined by covariant constancy condition
D1 = 0 makes sense. Kéahler current is vanishing or light-like. This phase is analogous to a
super-conductor or a ferromagnetic phase. For non-vanishing A, the Beltrami flow property
is lost but the analogy with ferromagnetism makes sense still.

2. For D¢p, = 3 foliations are lost. The phase is dominated by helical structures. This phase
is analogous to spin glass phase around phase transition point from ferromagnetic to non-
magnetized phase and expected to be important in living matter systems.

3. Dcp, = 4 is analogous to a chaotic phase with vanishing Kahler current and to a phase
without magnetization. The interpretation in terms of non-quantum coherent ”dead” matter
is suggestive.

An interesting question is whether the ordinary 8-D imbedding space which defines one sector
of the generalized imbedding space could correspond to A, = 0 phase. If so, then all states for
this sector would be vacua with respect to M* quantum numbers. M*-trivial zero energy states
in this sector could be transformed to non-trivial zero energy states by a leakage to other sectors.
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2.3.7 About small perturbations of field equations

The study of small perturbations of the known solutions of field equations is a standard manner
to get information about the properties of the solutions, their stability in particular. Fourier
expansion is the standard manner to do the perturbation theory. In the recent case an appropriate
modification of this ansatz might make sense if the solution in question is representable as a map
Mfi — CP,, and the perturbations are rapidly varying when compared to the components of the
induced metric and Kéahler form so that one can make adiabatic approximation and approximate
them as being effectively constant. Presumably also restrictions on directions of wave 4-vectors
k, = (w,k)) are necessary so that the direction of wave vector adapts to the slowly varying
background as in ray optics. Also Hamilton Jacobi structure is expected to modify the most
straightforward approach. The four C'P, coordinates are the dynamical variables so that the
situation is relatively simple.

A completely different approach is inspired by the physical picture. In this approach one glues
CP, type vacuum extremal to a known extremal and tries to deduce the behavior of the deformed
extremal in the vicinity of wormhole throat by posing the general conditions on the slicing by
light-like 3-surfaces Y;*. This approach is not followed now.

Generalized plane waves

Individual plane waves are geometrically very special since they represent a deformation of the
space-time surface depending on single coordinate only. Despite this one might hope that plane
waves or their appropriate modifications allowing to algebraize the treatment of small perturbations
could give useful information also now.

1. Lorentz invariance plus the translational invariance due to the assumption that the induced
metric and Kéhler form are approximately constant encourage to think that the coordinates
reduce Minkowski coordinates locally with the orientation of the local Minkowski frame de-
pending slowly on space-time position. Hamilton Jacobi (ST, 8™, w,w) are a good candidate
for this kind of coordinates. The properties of the Hamilton Jacobi structure and of the
solution ansatz suggest that excitations are generalized plane waves in longitudinal degrees
of freedom only so that four-momentum would be replaced by the longitudinal momentum.
In transverse degrees of freedom one might expect that holomorphic plane-waves exp(ikrw),
where k7 is transverse momentum, make algebraization possible.

For time-like longitudinal momenta one can choose the local M4 coordinates in such a manner
that longitudinal momentum reduces to (wp,0), where wy plays the role of rest mass and is
analogous to the plasma frequency serving as an infrared cutoff for plasma waves. In these
coordinates the simplest candidates for excitations with time-like momentum would be of
form As® = ea*exp(iwou), where s¥ are some real coordinates for CP,, a* are Fourier
coefficients, and time-like coordinate is defined as © = ST + S~. The excitations moving
with light velocity correspond to wy = 0, and one must treat this case separately using plane
wave exp(iwS¥T), where w has continuum of values.

2. It is possible that only some preferred C'P, coordinates are excited in longitudinal degrees
of freedom. For Dcp, = 3 ansatz the simplest option is that the complex C'Py coordinate
¢ depends analytically on w and the longitudinal C' P, coordinate s obeys the plane wave
ansatz. &(w) = a X exp(ikrw), where kr is transverse momentum allows the algebraization
of the solution ansatz also in the transversal degrees of freedom so that a dispersion relation
results. For imaginary values of k7 and w the equations are real.

2. General form for the second variation of the field equations

For time-like four-momentum the second variation of field equations contains three kinds of
terms. There are terms quadratic in wy and coming from the second derivatives of the deforma-
tion, terms proportional to iwy coming from the variation with respect to the derivatives of C'P»
coordinates, and terms which do not depend on wy and come from the variations of metric and
Kéhler form with respect to the C'P, coordinates.
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In standard perturbation theory the terms proportional to iwy would have interpretation as
analogs of dissipative terms. This forces to assume that wg is complex: note that in purely
imaginary wg the equations are real. The basic assumption is that Kahler action is able to mimic
dissipation despite the fact that energy and momentum are conserved quantities. The vanishing
of the Lorentz force has an interpretation as the vanishing of the dissipative effects. This would
suggest that the terms proportional to iwg vanish for the perturbations of the solution preserving
the non-dissipative character of the asymptotic solutions. This might quite well result from the
vanishing of the contractions with the deformation of the energy momentum tensor with the second
fundamental form and of energy momentum tensor with the deformation of the second fundamental
form coming from first derivatives.

Physical intuition would suggest that dissipation-less propagation is possible only along special
directions. Thus the vanishing of the linear terms should occur only for special directions of the
longitudinal momentum vector, say for light-like four-momenta in the direction of coordinate lines
of ST or S~. Quite generally, the sub-space of allowed four-momenta is expected to depend on
position since the components of metric and Ké&hler form are slowly varying. This dependence
is completely analogous with that appearing in the Hamilton Jacobi (ray-optics) approach to the
approximate treatment of wave equations and makes sense if the phase of the plane wave varies
rapidly as compared to the variation of C'P, coordinates for the unperturbed solution.

Complex values of wy are also possible, and would allow to deduce important information about
the rate at which small deviations from asymptotia vanish as well as about instabilities of the
asymptotic solutions. In particular, for imaginary values of wgy one obtains completely well-defined
solution ansatz representing exponentially decaying or increasing perturbation.

High energy limit

One can gain valuable information by studying the perturbations at the limit of very large four-
momentum. At this limit the terms which are quadratic in the components of momentum dominate
and come from the second derivatives of the C'P; coordinates appearing in the second fundamental
form. The resulting equations reduce for all C'P, coordinates to the same condition

TFkaks =0 .

This condition is generalization of masslessness condition with metric replaced by the energy mo-
mentum tensor, which means that light velocity is replaced by an effective light velocity. In fact,
energy momentum tensor effectively replaces metric also in the modified Dirac equation whose
form is dictated by super symmetry. Light-like four momentum is a rather general solution to the
condition and corresponds to wy = 0 case.

Reduction of the dispersion relation to the graph of swallowtail catastrophe

Also the general structure of the equations for small perturbations allows to deduce highly non-
trivial conclusions about the character of perturbations.

1. The equations for four C P, coordinates are simultaneously satisfied if the determinant as-
sociated with the equations vanishes. This condition defines a 3-dimensional surface in the
4-dimensional space defined by wy and coordinates of 3-space playing the role of slowly vary-
ing control parameters. 4 x 4 determinant results and corresponds to a polynomial which is
of order d = 8 in wy. If the determinant is real, the polynomial can depend on w3 only so
that a fourth order polynomial in w = w3 results.

2. Only complex roots are possible in the case that the terms linear in iwy are non-vanishing.
One might hope that the linear term vanishes for certain choices of the direction of slowly
varying four-momentum vector k*(x) at least. For purely imaginary values of wy the equa-
tions determinant are real always. Hence catastrophe theoretic description applies in this
case at least, and the so called swallow tail [A67] with three control parameters applies to
the situation.

3. The general form of the vanishing determinant is
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D(w,a,b,c) = w* —ew® — cw® —bw —a .

The transition from the oscillatory to purely dissipative case changes only the sign of w. By
the shift w = @ + e¢/4 the determinant reduces to the canonical form

D(,a,b,c) = w* — civ? — b — a

of the swallowtail catastrophe. This catastrophe has three control variables, which basically
correspond to the spatial 3-coordinates on which the induced metric and Kahler form depend.
The variation of these coefficients at the space-time sheet of course covers only a finite
region of the parameter space of the swallowtail catastrophe. The number of real roots for
w = w3 is four, two, or none since complex roots appear in complex conjugate pairs for a
real polynomial. The general shape of the region of 3-space is that for a portion of swallow
tail catastrophe.

=6 cm

Figure 2.1: The projection of the bifurcation set of the swallowtail catastrophe to the 3-dimensional
space of control variables. The potential function has four extrema in the interior of the swallowtail
bounded by the triangles, no extrema in the valley above the swallowtail, and 2 extrema elsewhere.

4. The dispersion relation for the ”rest mass” wy (decay rate for the imaginary value of wp)
has at most four real branches, which conforms with the fact that there are four dynamical
variables. In real case wy is analogous to plasma frequency acting as an infrared cutoff for the
frequencies of plasma excitations. To get some grasp on the situation notice that for a = 0
the swallowtail reduces to w = 0 and

W —c—b=0

which represents the cusp catastrophe easy to illustrate in 3-dimensional space. Cusp in turn
reduces for b = 0 to w = 0 and fold catastrophe @ = ++/c. Thus the catastrophe surface
becomes 4-sheeted for ¢ > 0 for sufficiently small values of the parameters a and b. The
possibility of negative values of @ in principle allows w? = @ + e/4 < 0 solutions identifiable
as exponentially decaying or amplified perturbations. At the high frequency limit the 4
branches degenerate to a single branch T*%k,, kg = 0, which as a special case gives light-like
four-momenta corresponding to wy = 0 and the origin of the swallowtail catastrophe.
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Maxwell line

fold lines

Figure 2.2: Cusp catastrophe. Vertical direction corresponds to the behavior variable and orthog-
onal directions to control variables.

5. It is quite possible that the imaginary terms proportional to twy cannot be neglected in the
time-like case. The interpretation would be as dissipative effects. If these effects are not
too large, an approximate description in terms of butterfly catastrophe makes still sense.
Note however that the second variation contains besides gravitational terms potentially large
dissipative terms coming from the variation of the induced Kéahler form and from the variation
of C'P, Christoffel symbols.

6. Additional complications are encountered at the points, where the induced Kéhler field van-
ishes since the second variation vanishes identically at these points. By the arguments rep-
resented earlier, these points quite generally represent instabilities.

2.4 Vacuum extremals

Vacuum extremals come as two basic types: C Py type vacuum extremals for which the induced
Kéhler field and Kéhler action are non-vanishing and the extremals for which the induced Kéhler
field vanishes. The deformations of both extremals are expected to be of fundamental importance
in TGD universe. Vacuum extremals are not gravitational vacua and they are indeed fundamental
in TGD inspired cosmology.

2.4.1 (P, type extremals
CP, type vacuum extremals

These extremals correspond to various isometric imbeddings of C'P; to Mi X CP,. One can also
drill holes to C'P,. Using the coordinates of C'P, as coordinates for X* the imbedding is given by
the formula

mt = mFu)

mmFmt = 0, (2.4.1)

where u(s¥) is an arbitrary function of CP, coordinates. The latter condition tells that the curve
representing the projection of X to M* is light like curve. One can choose the functions m?,i =
1,2, 3 freely and solve m® from the condition expressing light likeness so that the number of this
kind of extremals is very large.

The induced metric and Kihler field are just those of C P, and energy momentum tensor 7%
vanishes identically by the self duality of the K&hler form of C'P,. Also the canonical current
j¢ =DgJ aB associated with the Kéhler form vanishes identically. Therefore the field equations in
the interior of X* are satisfied. The field equations are also satisfied on the boundary components of



72 Chapter 2. Basic Extremals of the Kahler Action

C P, type extremal because the non-vanishing boundary term is, besides the normal component of
Kahler electric field, also proportional to the projection operator to the normal space and vanishes
identically since the induced metric and Kéahler form are identical with the metric and Kéahler form
of OP2

As a special case one obtains solutions for which M? projection is light like geodesic. The
projection of m® = constant surfaces to CP; is u = constant 3-sub-manifold of C'P,. Geometrically
these solutions correspond to a propagation of a massless particle. In a more general case the
interpretation as an orbit of a massless particle is not the only possibility. For example, one can
imagine a situation, where the center of mass of the particle is at rest and motion occurs along a
circle at say (m', m?) plane. The interpretation as a massive particle is natural. Amusingly, there
is nice analogy with the classical theory of Dirac electron: massive Dirac fermion moves also with
the velocity of light (zitterbewegung). The quantization of this random motion with light velocity
leads to Virasoro conditions and this led to a breakthrough in the understanding of the p-adic
QFT limit of TGD. Furthermore, it has turned out that Super Virasoro invariance is a general
symmetry of WCW geometry and quantum T'GD and appears both at the level of imbedding space
and space-time surfaces.

The action for all extremals is same and given by the Kahler action for the imbedding of C'P;.
The value of the action is given by

ﬂ'
= —— . 2.4.2
s 8(1[{ ( )

To derive this expression we have used the result that the value of Lagrangian is constant: L =
4/R*, the volume of CP, is V(CP,) = m?R*/2 and the definition of the Kiihler coupling strength
k1 = 1/16mak (by definition, 7R is the length of C' P, geodesics). Four-momentum vanishes for
these extremals so that they can be regarded as vacuum extremals. The value of the action is
negative so that these vacuum extremals are indeed favored by the minimization of the Kahler
action.

The absolute minimization of K&hler action was the original suggestion for what preferred
extremal property could mean, and suggested that ordinary vacuums with vanishing Kahler action
density are unstable against the generation of C'P, type extremals. The same conclusion however
follows also from the mere vacuum degeneracy of Kébler action. There are even reasons to expect
that C'P, type extremals are for TGD what black holes are for GRT. This identification seems
reasonable: the 4-D lines of generalized Feynman graphs [K38] would be regions with Euclidian
signature of induced metric and identifiable as deformations of C'P; type vacuum extremals, and
even TGD counterparts of blackholes would be analogous to lines of Feynman diagrams. Their
M* projection would be of course arbitrarily of macroscopic size. The nice generalization of the
area law for the entropy of black hole [K34] supports this view.

In accordance with the basic ideas of TGD topologically condensed vacuum extremals should
somehow correspond to massive particles. The properties of the C'P, type vacuum extremals are
in accordance with this interpretation. Although these objects move with a velocity of light, the
motion can be transformed to a mere zitterbewegung so that the center of mass motion is trivial.
Even the generation of the rest mass could might be understood classically as a consequence of
the minimization of action. Long range Kahler fields generate negative action for the topologically
condensed vacuum extremal (momentum zero massless particle) and Kéhler field energy in turn is
identifiable as the rest mass of the topologically condensed particle.

An interesting feature of these objects is that they can be regarded as gravitational instantons
[A49] . A further interesting feature of C'P, type extremals is that they carry nontrivial classical
color charges. The possible relationship of this feature to color confinement raises interesting
questions. Could one model classically the formation of the color singlets to take place through the
emission of ”colorons”: states with zero momentum but non-vanishing color? Could these peculiar
states reflect the infrared properties of the color interactions?

Are C'P, type non-vacuum extremals possible?

The isometric imbeddings of C' P, are all vacuum extremals so that these extremals as such cannot
correspond to physical particles. One obtains however non-vacuum extremals as deformations of
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these solutions. There are several types of deformations leading to non-vacuum solutions. In
order to describe some of them, recall the expressions of metric and Kéhler form of C'P; in the
coordinates (r,©, U, ®) [A61] are given by

ds? dr? r 9
® T e Paaeep @)
2
+ ﬁ(d@z + sin2@d©2) 5
J = (F£%EjdrA(dW—%aw(®)d¢)
2

The scaling of the line element is defined so that w R is the length of the C' P, geodesic line. Note that
® and ¥ appear as ”cyclic” coordinates in metric and Kéhler form: this feature plays important
role in the solution ansatze to be described.

Let M* = M? x E? denote the decomposition of M* to a product of 2-dimensional Minkowski
space and 2-dimensional Euclidian plane. This decomposition corresponds physically to the de-
composition of momentum degrees of freedom for massless particle: E? corresponds to polarization
degrees of freedom.

There are several types of non-vacuum extremals.

1. ”Virtual particle” extremals: the mass spectrum is continuous (also Euclidian momenta are
allowed) but these extremals reduce to vacuum extremals in the massless limit.

2. Massless extremals.

Consider first an example of virtual particle extremal. The simplest extremal of this type is
obtained in the following form

mF = "V 4R . (2.4.4)

Here a* and b* are some constant quantities. Field equations are equivalent to the conditions
expressing four-momentum conservation and are identically satisfied the reason being that induced
metric and Kéhler form do not depend on the coordinates ¥ and ®.

Extremal describes 3-surface, which moves with constant velocity in M*%. Four-momentum
of the solution can be both space and time like. In the massless limit solution however reduces
to a vacuum extremal. Therefore the interpretation as an off mass shell massless particle seems
appropriate.

Massless extremals are obtained from the following solution ansatz.

m’ = md=al+0d ,
(mt,m?) = (m'(r,0),m*(r,0)) . (2.4.5)

Only E? degrees of freedom contribute to the induced metric and the line element is obtained from

ds* = dsgp, — (dm')? — (dm?)? . (2.4.6)

Field equations reduce to conservation condition for the componenents of four-momentum in E?
plane. By their cyclicity the coordinates ¥ and & disappear from field equations and one obtains
essentially current conservation condition for two-dimensional field theory defined in space spanned
by the coordinates r and O.
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(Jzi),i = 0,
Ji = Tijf7°;\/§~ (2.4.7)

Here the index i and a refer to r and © and to E? coordinates m' and m? respectively. T%
denotes the canonical energy momentum tensor associated with Kéhler action. One can express
the components of 7% in terms of induced metric and C'P, metric in the following form

T9 = (—g%¢" + ¢ g"/2)si . (2.4.8)

This expression holds true for all components of the energy momentum tensor.

Since field equations are essentially two-dimensional conservation conditions they imply that
components of momentum currents can be regarded as vector fields of some canonical transforma-
tions

Ji _ 517 He

a ,J 0

(2.4.9)

where ¢ denotes two-dimensional constant symplectic form. An open problem is whether one
could solve field equations exactly and whether there exists some nonlinear superposition principle
for the solutions of these equations. Solutions are massless since transversal momentum densities
vanish identically.

Consider as a special case the solution obtained by assuming that one E? coordinate is constant
and second coordinate is function f(r) of the variable r only. Field equations reduce to the following
form

k

fo = im\/ﬂ — K214 r2)4/3 (2.4.10)
The solution is well defined only for sufficiently small values of the parameter k appearing as
integration constant and becomes ill defined at two singular values of the variable r. Boundary
conditions are identically satisfied at the singular values of r since the radial component of induced
metric diverges at these values of r. The result leads to suspect that the generation of boundary
components dynamically is a general phenomenon so that all non-vacuum solutions have boundary
components in accordance with basic ideas of TGD.

CP,#CPy#..#CPy:s as generalized Feynman graphs

There are reasons to believe that point like particles might be identified as C'Ps type extremals in
TGD approach. Also the geometric counterparts of the massless on mass shell particles and virtual
particles have been identified. It is natural to extend this idea to the level of particle interactions:
the lines of Feynman diagrams of quantum field theory are thickened to four-manifolds, which are
in a good approximation C' P, type vacuum extremals. This would mean that generalized Feynman
graphs are essentially connected sums of CPy:s (see Fig. 2.4.1): X4 = CPo#COPs...#CP,).

Unfortunately, this picture seems to be oversimplified. First, it is questionable whether the
cross sections for the scattering of C'P» type extremals have anything to do with the cross sections
associated with the standard gauge interactions. A naive geometric argument suggests that the
cross section should reflect the geometric size of the scattered objects and therefore be of the order
of CP, radius for topologically non-condensed CP, type extremals. The observed cross sections
would result at the first level of condensation, where particles are effectively replaced by surfaces
with size of order Compton length. Secondly, the h,,. = —D rule, considered in the previous
chapter, suggests that only real particles correspond to the C'P, type extremals whereas virtual
particles in general correspond to the vacuum extremals with a vanishing Kéahler action. The
reason is that the negative exponent of the Kéahler action reduces the contribution of the CP»
type extremals to the functional integral very effectively. Therefore the exchanges of C'P, type
extremals are suppressed by the negative exponent of the Kéhler action very effectively so that
geometric scattering cross section is obtained.
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Figure 2.3: Topological sum of CPy:s as Feynman graph with lines thickened to four-manifolds

2.4.2 Vacuum extremals with vanishing Kahler field

Vacuum extremals correspond to 4-surfaces with vanishing Kéahler field and therefore to gauge field
zero configurations of gauge field theory. These surfaces have C'P, projection, which is Legendre
manifold. The condition expressing Legendre manifold property is obtained in the following man-
ner. Kéhler potential of C'P, can be expressed in terms of the canonical coordinates (P;, Q;) for
CP; as

A = > PdQb . (2.4.11)
k

The conditions

P. = 0grf(Q) (2.4.12)

where f(Q") is arbitrary function of its arguments, guarantee that Kéhler potential is pure gauge.
It is clear that canonical transformations, which act as local U (1) gauge transformations, transform
different vacuum configurations to each other so that vacuum degeneracy is enormous. Also Mjl_
diffeomorphisms act as the dynamical symmetries of the vacuum extremals. Some sub-group of
these symmetries extends to the isometry group of the WCW in the proposed construction of the
configuration space metric. The vacuum degeneracy is still enhanced by the fact that the topology
of the four-surface is practically free.

Vacuum extremals are certainly not absolute minima of the action. For the induced metric
having Minkowski signature the generation of Kéhler electric fields lowers the action. For Euclidian
signature both electric and magnetic fields tend to reduce the action. Therefore the generation of
Euclidian regions of space-time is expected to occur. C'P; type extremals, identifiable as real (as
contrast to virtual) elementary particles, can be indeed regarded as these Euclidian regions.

Particle like vacuum extremals can be classified roughly by the number of the compactified
dimensions D having size given by C P, length. Thus one has Dop, = 3 for C'P, type extremals,
Dcp, = 2 for string like objects, Dcp, = 1 for membranes and Dcp, = 0 for pieces of M*.
As already mentioned, the rule h,,. = —D relating the vacuum weight of the Super Virasoro
representation to the number of compactified dimensions of the vacuum extremal is very suggestive.
D < 3 vacuum extremals would correspond in this picture to virtual particles, whose contribution
to the generalized Feynman diagram is not suppressed by the exponential of Kéahler action unlike
that associated with the virtual C'P, type lines.

M* type vacuum extremals (representable as maps Mi — C'P; by definition) are also expected
to be natural idealizations of the space-time at long length scales obtained by smoothing out small
scale topological inhomogenuities (particles) and therefore they should correspond to space-time
of GRT in a reasonable approximation.

The reason would be ”Yin-Yang principle”.
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1. Consider first the option for which Ké&hler function corresponds to an absolute minimum
of Kéahler action. Vacuum functional as an exponent of Ké&hler function is expected to
concentrate on those 3-surfaces for which the Kéahler action is non-negative. On the other
hand, the requirement that Kahler action is absolute minimum for the space-time associated
with a given 3-surface, tends to make the action negative. Therefore the vacuum functional
is expected to differ considerably from zero only for 3-surfaces with a vanishing Kéhler action
per volume. It could also occur that the degeneracy of 3-surfaces with same large negative
action compensates the exponent of Kahler function.

2. If preferred extrema correspond to Kéahler calibrations or their duals [K77] , Yin-Yang prin-
ciple is modified to a more local principle. For Kéahler calibrations (their duals) the absolute
value of action in given region is minimized (maximized). A given region with positive (neg-
ative sign) of action density favors Kéhler electric (magnetic) fields. In long length scales the
average density of Kéhler action per four-volume tends to vanish so that Kéhler function of
the entire universe is expected to be very nearly zero. This regularizes the theory automati-
cally and implies that average Kéhler action per volume vanishes. Positive and finite values
of Kahler function are of course favored.

In both cases the vanishing of Kéhler action per volume in long length scales makes vacuum
extremals excellent idealizations for the smoothed out space-time surface. Robertson-Walker cos-
mologies provide a good example in this respect. As a matter fact the smoothed out space-time
is not a mere fictive concept since larger space-time sheets realize it as a essential part of the
Universe.

Several absolute minima could be possible and the non-determinism of the vacuum extremals
is not expected to be reduced completely. The remaining degeneracy could be even infinite. A
good example is provided by the vacuum extremals representable as maps Mj‘; — D', where D' is
one-dimensional curve of C'P,. This degeneracy could be interpreted as a space-time correlate for
the non-determinism of quantum jumps with maximal deterministic regions representing quantum
states in a sequence of quantum jumps.

2.5 Non-vacuum extremals

2.5.1 Cosmic strings

Cosmic strings are extremals of type X2 x S2, where X? is minimal surface in Mj‘_ (analogous
to the orbit of a bosonic string) and S? is the homologically non-trivial geodesic sphere of C'P.
The action of these extremals is positive and thus absolute minima are certainly not in question.
One can however consider the possibility that these extremals are building blocks of the absolute
minimum space-time surfaces since the absolute minimization of the Kahler action is global rather
than a local principle. A more general approach gives up absolute minimization as definition of
preferred extremal property and there are indeed several proposals for what preferred extremal
property could mean. Cosmic strings can contain also Kéhler charged matter in the form of small
holes containing elementary particle quantum numbers on their boundaries and the negative Kéahler
electric action for a topologically condensed cosmic string could cancel the Kéahler magnetic action.
The string tension of the cosmic strings is given by

1 1
= —~ _~.922107%=
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(2.5.1)
where ag ™~ ey, has been used to get the numerical estimate. The string tension is of the same
order of magnitude as the string tension of the cosmic strings of GUTs and this leads to the model
of the galaxy formation providing a solution to the dark matter puzzle as well as to a model for
large voids as caused by the presence of a strongly Kahler charged cosmic string. Cosmic strings
play also fundamental role in the TGD inspired very early cosmology.
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2.5.2 Massless extremals

Massless extremals (or topological light rays) are characterized by massless wave vector p and
polarization vector ¢ orthogonal to this wave vector. Using the coordinates of M* as coordinates
for X* the solution is given as

st = fEu,v)
u=p-m , v=¢e-m ,
p-e=0, p>=0 .

CP, coordinates are arbitrary functions of p-m and € - m. Clearly these solutions correspond to
plane wave solutions of gauge field theories. It is important to notice however that linear super
position doesn’t hold as it holds in Maxwell phase. Gauge current is proportional to wave vector
and its divergence vanishes as a consequence. Also cylindrically symmetric solutions for which the
transverse coordinate is replaced with the radial coordinate p = y/m? + m3 are possible. In fact,
v can be any function of the coordinates m', m? transversal to the light like vector p.

Boundary conditions on the boundaries of the massless extremal are satisfied provided the
normal component of the energy momentum tensor vanishes. Since energy momentum tensor is of
the form T o p®p? the conditions T = 0 are satisfied if the M* projection of the boundary is
given by the equations of form

H(p-m,e-m,e;-m) =0 ,

e-p=0, e1-p=0, €-61=0 . (2.5.2)

where H is arbitrary function of its arguments. Recall that for M* type extremals the boundary
conditions are also satisfied if Kéahler field vanishes identically on the boundary.

The following argument suggests that there are not very many manners to satisfy boundary
conditions in case of M* type extremals. The boundary conditions, when applied to M* coordinates
imply the vanishing of the normal component of energy momentum tensor. Using coordinates,
where energy momentum tensor is diagonal, the requirement boils down to the condition that at
least one of the eigen values of 7% vanishes so that the determinant det(7“?) must vanish on
the boundary: this condition defines 3-dimensional surface in X*. In addition, the normal of this
surface must have same direction as the eigen vector associated with the vanishing eigen value:
this means that three additional conditions must be satisfied and this is in general true in single
point only. The boundary conditions in C'Ps, coordinates are satisfied provided that the conditions

JJk9sst =0
are satisfied. The identical vanishing of the normal components of K&hler electric and magnetic
fields on the boundary of massless extremal property provides a manner to satisfy all boundary
conditions but it is not clear whether there are any other manners to satisfy them.

The characteristic feature of the massless extremals is that in general the Kahler gauge current
is non-vanishing. In ordinary Maxwell electrodynamcis this is not possible. This means that these
extremals are accompanied by vacuum current, which contains in general case both weak and
electromagnetic terms as well as color part.

A possible interpretation of the solution is as the exterior space-time to a topologically con-
densed particle with vanishing mass described by massless C' P, type extremal, say photon or
neutrino. In general the surfaces in question have boundaries since the coordinates s are bounded
this is in accordance with the general ideas about topological condensation. The fact that massless
plane wave is associated with C' P, type extremal combines neatly the wave and particle aspects at
geometrical level.

The fractal hierarchy of space-time sheets implies that massless extremals should interesting
also in long length scales. The presence of a light like electromagnetic vacuum current implies the
generation of coherent photons and also coherent gravitons are generated since the Einstein tensor
is also non-vanishing and light like (proportional to k“k”). Massless extremals play an important
role in the TGD based model of bio-system as a macroscopic quantum system. The possibility
of vacuum currents is what makes possible the generation of the highly desired coherent photon
states.
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2.5.3 Generalization of the solution ansatz defining massless extremals
(MEs)

The solution ansatz for MEs has developed gradually to an increasingly general form and the
following formulation is the most general one achieved hitherto. Rather remarkably, it rather
closely resembles the solution ansatz for the C'P, type extremals and has direct interpretation
in terms of geometric optics. Equally remarkable is that the latest generalization based on the
introduction of the local light cone coordinates was inspired by quantum holography principle.
The solution ansatz for MEs has developed gradually to an increasingly general form and the
following formulation is the most general one achieved hitherto. Rather remarkably, it rather
closely resembles the solution ansatz for the C'P, type extremals and has direct interpretation
in terms of geometric optics. Equally remarkable is that the latest generalization based on the
introduction of the local light cone coordinates was inspired by quantum holography principle.

Local light cone coordinates

The solution involves a decomposition of Mfﬁ tangent space localizing the decomposition of Minkowski
space to an orthogonal direct sum M2 @® E? defined by light-like wave vector and polarization vector
orthogonal to it. This decomposition defines what might be called local light cone coordinates.

1. Denote by m® the linear Minkowski coordinates of M*. Let (ST,S~, E', E?) denote local
coordinates of Mi defining a local decomposition of the tangent space M* of Mi into a direct
orthogonal sum M* = M? @ E? of spaces M? and E?. This decomposition has interpretation
in terms of the longitudinal and transversal degrees of freedom defined by local light-like
four-velocities v4 = VS and polarization vectors ¢; = VE? assignable to light ray.

2. With these assumptions the coordinates (S, E?) define local light cone coordinates with the
metric element having the form

ds® = 2g.-dSTdS™ + gi1(dE")? + gao(dE?)? . (2.5.3)

If complex coordinates are used in transversal degrees of freedom one has g1 = goo.

3. This family of light cone coordinates is not the most general family since longitudinal and
transversal spaces are orthogonal. One can also consider light-cone coordinates for which
one non-diagonal component, say mi4, is non-vanishing if the solution ansatz is such that
longitudinal and transversal spaces are orthogonal for the induced metric.

A conformally invariant family of local light cone coordinates

The simplest solutions to the equations defining local light cone coordinates are of form Sy = k-m
giving as a special case S+ = m® & m3. For more general solutions of from

Se=m’ % f(m',m?m?®) , (Vaf)?=1,

where f is an otherwise arbitrary function, this relationship reads as

ST 4+S5™=2m° .
This condition defines a natural rest frame. One can integrate f from its initial data at some
two-dimensional f = constant surface and solution describes curvilinear light rays emanating from
this surface and orthogonal to it. The flow velocity field v = V f is irrotational so that closed flow
lines are not possible in a connected region of space and the condition 72 = 1 excludes also closed
flow line configuration with singularity at origin such as v = 1/p rotational flow around axis.

One can identify E? as a local tangent space spanned by polarization vectors and orthog-
onal to the flow lines of the velocity field ¥ = Vf(m!,m?,m3). Since the metric tensor of any
3-dimensional space allows always diagonalization in suitable coordinates, one can always find coor-
dinates (E', E?) such that (f, E', E?) form orthogonal coordinates for m® = constant hyperplane.
Obviously one can select the coordinates E' and E? in infinitely many manners.
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Closer inspection of the conditions defining local light cone coordinates

Whether the conformal transforms of the local light cone coordinates { S+ = m°=+f(m!, m? m3), E'}
define the only possible compositions M2 @ E? with the required properties, remains an open ques-
tion. The best that one might hope is that any function ST defining a family of light-like curves
defines a local decomposition M* = M? & E? with required properties.

1. Suppose that ST and S~ define light-like vector fields which are not orthogonal (proportional
to each other). Suppose that the polarization vector fields ¢; = VE! tangential to local E?
satisfy the conditions ¢; - VS* = 0. One can formally integrate the functions E? from these
condition since the initial values of E* are given at m® = constant slice.

2. The solution to the condition VS, - €; = 0 is determined only modulo the replacement

€ — € =¢€6+kVSy |

where k is any function. With the choice

o VE!- VS~
- VSt.VS-
one can satisfy also the condition é; - V.S™ = 0.

3. The requirement that also €; is gradient is satisfied if the integrability condition

k= k(ST)

is satisfiedin this case €; is obtained by a gauge transformation from ¢;. The integrability
condition can be regarded as an additional, and obviously very strong, condition for S~ once
St and E° are known.

4. The problem boils down to that of finding local momentum and polarization directions de-
fined by the functions S, S~ and E' and E? satisfying the orthogonality and integrability
conditions

(VSH)2= (VS )2=0, VSt VS~ #0 ,

. i S—
VSt.VE =0 , TG = ki(ST) .
The number of integrability conditions is 343 (all derivatives of k; except the one with respect
to ST vanish): thus it seems that there are not much hopes of finding a solution unless some
discrete symmetry relating ST and S~ eliminates the integrability conditions altogether.

A generalization of the spatial reflection f — —f working for the separable Hamilton Jacobi
function Sy = m" & f ansatz could relate ST and S~ to each other and trivialize the integrabil-
ity conditions. The symmetry transformation of M_‘i must perform the permutation ST < S,
preserve the light-likeness property, map E? to E?, and multiply the inner products between M?
and E? vectors by a mere conformal factor. This encourages the conjecture that all solutions are
obtained by conformal transformations from the solutions Si = m" & f.

General solution ansatz for MEs for given choice of local light cone coordinates

Consider now the general solution ansatz assuming that a local wave-vector-polarization decom-
position of M_‘f_ tangent space has been found.

1. Let E(ST, E', E?) be an arbitrary function of its arguments: the gradient VE defines at each
point of E? an S*-dependent (and thus time dependent) polarization direction orthogonal
to the direction of local wave vector defined by V.S*. Polarization vector depends on E?
position only.
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. Quite a general family of MEs corresponds to the solution family of the field equations having

the general form

st =St E)

where s* denotes C'P, coordinates and f kis an arbitrary function of ST and E. The solution
represents a wave propagating with light velocity and having definite ST dependent polar-
ization in the direction of VE. By replacing S* with S~ one obtains a dual solution. Field
equations are satisfied because energy momentum tensor and Kéhler current are light-like so
that all tensor contractions involved with the field equations vanish: the orthogonality of M2
and E? is essential for the light-likeness of energy momentum tensor and Kihler current.

. The simplest solutions of the form Sy = m®4+m3, (B!, E?) = (m!,m?) and correspond to a

cylindrical MEs representing waves propagating in the direction of the cylinder axis with light
velocity and having polarization which depends on point (E!, E?) and S* (and thus time).
For these solutions four-momentum is light-like: for more general solutions this cannot be
the case. Polarization is in general case time dependent so that both linearly and circularly
polarized waves are possible. If m3 varies in a finite range of length L, then ’free’ solution
represents geometrically a cylinder of length L moving with a light velocity. Of course, ends
could be also anchored to the emitting or absorbing space-time surfaces.

. For the general solution the cylinder is replaced by a three-dimensional family of light like

curves and in this case the rectilinear motion of the ends of the cylinder is replaced with
a curvilinear motion with light velocity unless the ends are anchored to emitting/absorbing
space-time surfaces. The non-rotational character of the velocity flow suggests that the freely
moving particle like 3-surface defined by ME cannot remain in a infinite spatial volume. The
most general ansatz for MEs should be useful in the intermediate and nearby regions of a
radiating object whereas in the far away region radiation solution is excepted to decompose
to cylindrical ray like MEs for which the function f(m!,m2?,m?) is a linear function of m®.

. One can try to generalize the solution ansatz further by allowing the metric of Mi to have

components of type g;; or g;_ in the light cone coordinates used. The vanishing of T'!,
T+, and T~ is achieved if g;+ = 0 holds true for the induced metric. For s¥ = s¥(S+ E)
ansatz neither goy nor g;_ is affected by the imbedding so that these components of the
metric must vanish for the Hamilton Jacobi structure:

ds* = 29, dSTdS™ +2g11dE'dST + g11(dEY)? + gaa(dE?)? . (2.5.4)

g1+ = 0 can be achieved by an additional condition

miy = suoistoLst . (2.5.5)

The diagonalization of the metric seems to be a general aspect of preferred extremals. The
absence of metric correlations between space-time degrees of freedom for asymptotic self-
organization patterns is somewhat analogous to the minimization of non-bound entanglement
in the final state of the quantum jump.

Are the boundaries of space-time sheets quite generally light like surfaces with Hamil-
ton Jacobi structure?

Quantum holography principle naturally generalizes to an approximate principle expected to hold
true also in non-cosmological length and time scales.
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1. The most general ansatz for topological light rays or massless extremals (MEs) inspired by
the quantum holographic thinking relies on the introduction of the notion of local light cone
coordinates S4,S_, Fy, Es. The gradients V.S, and VS_ define two light like directions
just like Hamilton Jacobi functions define the direction of propagation of wave in geometric
optics. The two polarization vector fields VE; and VE; are orthogonal to the direction of
propagation defined by either S or S_. Since also E; and E5 can be chosen to be orthogonal,
the metric of Mi can be written locally as ds? = g, _dS,dS_+g11dE?+goadE3. In the earlier
ansatz S; and S_ where restricted to the variables k- m and l;rm, where k and k& correspond
to light like momentum and its mirror image and m denotes linear M* coordinates: these
MEs describe cylindrical structures with constant direction of wave propagation expected to
be most important in regions faraway from the source of radiation.

2. Boundary conditions are satisfied if the 3-dimensional boundaries of MEs have one light like
direction (S or S_ is constant). This means that the boundary of ME has metric dimension
d = 2 and is characterized by an infinite-dimensional super-symplectic and super-conformal
symmetries just like the boundary of the imbedding space M. fi x CPy: The boundaries are
like moments for mini big bangs (in TGD based fractal cosmology big bang is replaced with
a silent whisper amplified to not necessarily so big bang).

3. These observations inspire the conjecture that boundary conditions for M* like space-time
sheets fixed by the absolute minimization of Kéhler action quite generally require that space-
time boundaries correspond to light like 3-surfaces with metric dimension equal to d = 2.
This does not yet imply that light like surfaces of imbedding space would take the role of the
light cone boundary: these light like surface could be seen only as a special case of causal
determinants analogous to event horizons.

2.5.4 Maxwell phase

"Maxwell phase” corresponds to small deformations of the M* type vacuum extremals. Since
energy momentum tensor is quadratic in Kéahler field the term proportional to the contraction of
the energy momentum tensor with second fundamental form drops from field equations and one
obtains in lowest order the following field equations

ja‘]klsfa = 0. (256)

These equations are satisfied if Maxwell’s equations

i =0 (2.5.7)

hold true. Massless extremals and Maxwell phase clearly exclude each other and it seems that
they must corresponds to different space-time sheets.

The explicit construction of these extremals reduces to the task of finding an imbedding for an
arbitrary free Maxwell field to H. One can also allow source terms corresponding to the presence
of the point like charges: these should correspond to the regions of the space-time, where the flat
space-time approximation of the space-time fails. The regions where the approximation defining
the Maxwell phase fails might correspond to a topologically condensed C' P, type extremals, for
example. As a consequence, Kahler field is superposition of radiation type Kéhler field and of
Coulomb term. A second possibility is the generation of "hole” with similar Coulombic Kéahler
field.

An important property of the Maxwell phase (also of massless extremals) is its approximate
canonical invariance. Canonical transformations do not spoil the extremal property of the four-
surface in the approximation used, since it corresponds to a mere U(1) gauge transformation. This
implies the counterpart of the vacuum degeneracy, that is, the existence of an enormous number of
four-surfaces with very nearly the same action. Also there is an approximate Dif f (Mf‘;) invariance.

The canonical degeneracy has some very interesting consequences concerning the understanding
of the electro-weak symmetry breaking and color confinement. Kéahler field is canonical invariant
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and satisfies Maxwells equations. This is in accordance with the identification of Kéhler field as
U(1) part of the electro-weak gauge field. Electromagnetic gauge field is a superposition of Kahler
field and Z° fieldy = 3J — sin?(0w)Z°/2 so that also electromagnetic gauge field is long ranged
assuming that Z° and W fields are short ranged. These fields are not canonical invariants and
their behavior seems to be essentially random, which implies short range correlations and the
consequent massivation.

There is an objection against this argument. For the known D < 4 solutions of field equations
weak fields are not random at all. These situations could represent asymptotic configurations
assignable to space-time sheets. This conforms with the interpretation that weak gauge fields are
essentially massless within the asymptotic space-time sheets representing weak bosons. Gauge
fields are however transferred between space-time sheets through # contacts modellable as pieces
of CP, type extremals having Dop, = 4. In contrast to Kéhler and color gauge fluxes, weak
gauge fluxes are not conserved in the Euclidian time evolution between the 3-D causal horizons
separating the Euclidian # contact from space-time sheets with Minkowskian signature. This non-
conservation implying the loss of coherence in the transfer of fields between space-time sheets is a
plausible mechanism for the loss of correlations and massivation of the weak gauge fields.

Classical gluon fields are proportional to Kéahler field and to the Hamiltonians associated with
the color isometry generators.

9ls = kH%ap . (2.5.8)

This implies that the direction of gluon fields in color algebra is random. One can always perform
a canonical transformation, which reduces to a global color rotation in some arbitrary small region
of space-time and reduces to identity outside this region. The proportionality of a gluon field to
Késhler form implies that there is a classical long range correlation in X* degrees of freedom: in
this sense classical gluon fields differ from massive electro-weak fields in Maxwell phase.

2.5.5 Stationary, spherically symmetric extremals

The stationary, spherically symmetric extremals of the Kihler action imbeddable in M* x S?, where
52 is geodesic sphere, are the simplest extremals, which one can study as models for the space-time
surrounding a topologically condensed particle, say C'P» type vacuum extremal. In the region near
the particle the spherical symmetry is an unrealistic assumption since it excludes the presence
of magnetic fields needed to cancel the total Kahler action. The stationarity is also unrealistic
assumption since zitterbewegung seems to provide a necessary mechanism for generating Kéahler
magnetic field and for satisfying boundary conditions. Also the imbeddability to M* x S? implies
unrealistic relationship between Z° and photon charges.

According to the general wisdom, the generation of a Kahler electric field must take place in
order to minimize the action and it indeed turns out that the extremal is characterized by essentially
1/r? Kibhler electric field. The necessary presence of a hole or of a topologically condensed object
is also demonstrated: it is impossible to find extremals well defined in the region surrounding the
origin. It is impossible to satisfy boundary conditions at a hole: this is in accordance with the
idea that Euclidian region corresponding to a C'P, type extremal performing zitterbewegung is
generated. In case of C'P, extremal radius is of the order of the Compton length of the particle
and in case of a "hole” of the order of Planck length. The value of the vacuum frequency w is of
order of particle mass whereas for macroscopic vacuum extremals it must be of the order of 1/R.
This does not lead to a contradiction if the concept of a many-sheeted space-time is accepted.

The Poincare energy of the exterior region is considerably smaller than the gravitational mass;
this conforms with the interpretation that gravitational mass is sum of absolute values of positive
and negative inertial masses associated with matter and negative energy antimatter. It is quite
possible that classical considerations cannot provide much understanding concerning the inertial
masses of topologically condensed particles. Electro-weak gauge forces are considerably weaker
than the gravitational force at large distances, when the value of the frequency parameter w is of
order 1/R . Both these desirable properties fail to be true if C P, radius is of order Planck length
as believed earlier.
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In light of the general ideas about topological condensation it is clear that in planetary length
scales these kind of extremals cannot provide a realistic description of space-time. Indeed, spher-
ically symmetric extremals predict a wrong rate for the precession of the perihelion of Mercury.
Scwhartschild and Reissner-Nordstrom metric do this and indeed allow imbedding as vacuum ex-
tremals for which the inertial masses of positive energy matter and negative energy antimatter
sum up to zero.

This does not yet resolve the interpretational challenge due to the unavoidable long range color
and weak gauge fields. A dark matter hierarchy giving rise to a hierarchy of color and electro-weak
physics characterized by increasing values of weak and confinement scales explains these fields. #
contacts involve a pair of causal horizons at which the Euclidian metric signature of # contact
transforms to Minkowskian one. These causal horizons have interpretation as partons so that #
contact can be regarded as a bound state of partons bound together by a gravitational instanton
(C P, type extremal). # contacts provide basic example of dark matter creating long ranged weak
fields.

An important result is the correlation between the sign of the vacuum frequency w and that
of the Kahler charge, which is of opposite sign for fermions and anti-fermions. This suggests an
explanation for matter-antimatter asymmetry. Matter and antimatter condense stably on disjoint
regions of the space-time surface at different space-time sheets. Stable antimatter could correspond
to negative time orientation and negative energy. This leads to a model for the primordial gen-
eration of matter as spontaneous generation of zero energy # contacts between space-time sheets
of opposite time orientations. If C' P conjugation is not exact symmetry, # contacts and their CP
conjugates are created with slightly different rates and this gives rise to CP asymmetry at each
of the two space-time sheets involved. After the splitting of # contacts and subsequent annihila-
tion of particles and antiparticles at each space-time sheet, the two space-time sheets contain only
positive energy matter and negative energy antimatter.

General solution ansatz

The general form of the solution ansatz is obtained by assuming that the space-time surface in
question is a sub-manifold of M* x S2?, where S? is the homologically non-trivial geodesic sphere
of CP,. S? is most conveniently realized as r = oo surface of C'P,, for which all values of the
coordinate ¥ correspond to same point of C'P; so that one can use © and ® as the coordinates of
S2.

The solution ansatz is given by the expression

cos(©) = wu(r) ,
= wt ,
m® = A,
ry = 1T, Oy=0, oépy=0¢ . (2.5.9)

The induced metric is given by the expression

R? R?
ds> = |\ — IwQ(l —u?)|dt* — (1 + IG?T)dTQ —r2d0? .
(2.5.10)
The value of the parameter A is fixed by the condition g4 (00) = 1:
R2
A2 — Iwg(l —u(0)?) = 1. (2.5.11)

From the condition € A e? = 0 the non-vanishing components of the induced Kéhler field are given
by the expression

Jw = —u, . (2.5.12)

w
4
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Geodesic sphere property implies that Z° and photon fields are proportional to Kihler field:

z° = J. (2.5.13)

From this formula one obtains the expressions

3—p/2 1
Qun = B g, :
4Ty, 4oy
4 2
Q = Jwdm (2.5.14)

vV —9rrJtt

for the electromagnetic and Z° charges of the solution using e and gz as unit.

Field equations can be written as conditions for energy momentum conservation (two equations
is in principle all what is needed in the case of geodesic sphere). Energy conservation holds
identically true and conservation of momentum, say, in z-direction gives the equation

(TWZJ’),T'F(T%Z,G),G = 0. (2.5.15)

Using the explicit expressions for the components of the energy momentum tensor

T’I‘T — gT’TL/Q ,
THH — _goﬁL/Q ,
L = g% (Ji)?/9/2 , (2.5.16)

and the following notations

A = gttgrrrz\/*gttgrr ;
X = (Ju)?, (2.5.17)

the field equations reduce to the following form

2AX
(97AX), == = 0. (2.5.18)

In the approximation ¢"" = 1 this equation can be readily integrated to give AX = C/r?. Inte-
grating Eq. (4.6.7), one obtains integral equation for X

1

Jor = Tg(|g”|3gtt)l/4ea:p(/ drg%);, (2.5.19)

where ¢ is integration constant, which is related to the charge parameter of the long range Kéahler
electric field associated with the solution. r. denotes the critical radius at which the solution ceases
to be well defined.

The inspection of this formula shows that .J;,. behaves essentially as 1/r2 Coulomb field. This
behavior doesn’t depend on the detailed properties of the solution ansatz (for example the imbed-
dability to M* x S?): stationarity and spherical symmetry is what matters only. The compactness
of C'P; means that stationary, spherically symmetric solution is not possible in the region contain-
ing origin. This is in concordance with the idea that either a hole surrounds the origin or there
is a topologically condensed C' P, extremal performing zitterbewegung near the origin and making
the solution non-stationary and breaking spherical symmetry.

Second integration gives the following integral equation for C' P, coordinate u = cos(0)
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4q [T 1 "y
u(r) = wu+ 7/ (—gfrgtt)l/‘lfexp(/ dr==) . (2.5.20)
w S r o r
Here ug denotes the value of the coordinate u at r = rg.
The form of the field equation suggests a natural iterative procedure for the numerical con-

struction of the solution for large values of r.

up(r) = Th-1 , (2.5.21)

where T),_1 is evaluated using the induced metric associated with u,_1. The physical content of
the approximation procedure is clear: estimate the gravitational effects using lower order solution
since these are expected to be small.

A more convenient manner to solve u is based on Taylor expansion around the point V =1/r =
0. The coefficients appearing in the power series expansion u = ) u,A"V" : A = q/w can be
solved by calculating successive derivatives of the integral equation for u.

The lowest order solution is simply

Uy = Uso , (2.5.22)

and the corresponding metric is flat metric. In the first order one obtains for u(r) the expression

U = U — — , (2.5.23)
wr
which expresses the fact that Kihler field behaves essentially as 1/r? Coulomb field. The behavior
of u as a function of r is identical with that obtained for the imbedding of the Reissner-Nordstrom
solution.
To study the properties of the solution we fix the signs of the parameters in the following
manner:

U <0, ¢g<0, w>0 (2.5.24)

(reasons become clear later).
Concerning the behavior of the solution one can consider two different cases.

1. The condition g¢ > 0 hold true for all values of ©. In this case u decreases and the rate of
decrease gets faster for small values of . This means that in the lowest order the solution
becomes certainly ill defined at a critical radius » = r. given by the the condition u = 1: the
reason is that w cannot get values large than one. The expression of the critical radius is

given by
4q
re
(|too| + 1)w
4aQem 1

T B=p/2) (sl + Do (2.5.25)

The presence of the critical radius for the actual solution is also a necessity as the inspection
of the expression for J;,. shows: 0,0 grows near the origin without bound and u = 1 is reached
at some finite value of r. Boundary conditions require that the quantity X = T"",/g vanishes
at critical radius (no momentum flows through the boundary). Substituting the expression
of Jy, from the field equation to T"" the expression for X reduces to a form, from which it is
clear that X cannot vanish. The cautious conclusion is that boundary conditions cannot be
satisfied and the underlying reason is probably the stationarity and spherical symmetry of the
solution. Physical intuition suggests that that C'Py type extremal performing zitterbewegung
is needed to satisfy the boundary conditions.
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2. g4 vanishes for some value of ©. In this case the radial derivative of u together with g4 can
become zero for some value of » = r.. Boundary conditions can be satisfied only provided
re = 0. Thus it seems that for the values of w satisfying the condition w? = #;(Ow) it
might be possible to find a globally defined solution. The study of differential equation for «
however shows that the ansatz doesn’t work. The conclusion is that although the boundary

is generated it is not possible to satisfy boundary conditions.

A direct calculation of the coefficients u,, from power series expansion gives the following third
order polynomial approximation for u (V = 1/r)

u = ZunA"V",

Uy = Uo(<0), u=1,

U9 Klus| , us=K(A+4Klus]) ,
4 2

A = 4 , KEng— .
w 4

(2.5.26)

The coefficients us and uz are indeed positive which means that the value of the critical radius
gets larger at least in these orders.

Solution contains three parameters: Kéhler electric flux @ = 4mq, parameter wR and parameter
Uso- The latter parameters can be regarded as parameters describing the properties of a flat vacuum
extremal (lowest order solution) to which particle like solution is glued and are analogous to the
parameters describing symmetry broken vacuum in gauge theories.

Solution is not a realistic model for topological condensation

The solution does not provide realistic model for topological condensation although it gives indirect
support for some essential assumptions of TGD based description of Higgs mechanism.

1. When the value of w is of the order of C'P; mass the solution could be interpreted as the
”exterior metric” of a "hole”.
i) The radius of the hole is of the order of C'Py length and its mass is of the order of C' P,
mass.
ii) Kahler electric field is generated and charge renormalization takes place classically at C' P,
length scales as is clear from the expression of Q(r): Q(r) x (%)1/ 4 and charge increases
at short distances.
iii) The existence of the critical radius is unavoidable but boundary conditions cannot be
satisfied. The failure to satisfy boundary conditions might be related to stationarity or to
the absence of magnetic field. The motion of the boundary component with velocity of light
might be the only manner to satisfy boundary conditions. Second possibility is the breaking
of spherical symmetry by the generation of a static magnetic field.
iv) The absence of the Kédhler magnetic field implies that the Kéhler action has an infinite
magnitude and the probability of the configuration is zero. A more realistic solution ansatz
would break spherical symmetry containing dipole type magnetic field in the nearby region of
the hole. The motion of the boundary with a velocity of light could serves as an alternative
mechanism for the generation of magnetic field. The third possibility, supported by physical
intuition, is that one must give up “hole” type extremal totally.

2. For sufficiently large values of r and for small values of w (of the order of elementary particle
mass scale), the solution might provide an approximate description for the region surrounding
elementary particle. Although it is not possible to satisfy boundary conditions the order of
magnitude estimate for the size of critical radius (r. >~ «/w) should hold true for more realistic
solutions, too. The order of magnitude for the critical radius is smaller than Compton length
or larger if the vacuum parameter w is larger than the mass of the particle. In macroscopic
length scales the value of w is of order 1/R. This does not lead to a contradiction if the many-
sheeted space-time concept is accepted so that w < m corresponds to elementary particle
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space-time sheet. An unrealistic feature of the solution is that the relationship between Z°
and em charges is not correct: Z° charge should be very small in these length scales.

Exterior solution cannot be identified as a counterpart of Schwartshild solution

The first thing, which comes into mind is to ask whether one might identify exterior solution as the
TGD counterpart of the Schwartshild solution. The identification of gravitational mass as absolute
value of inertial mass which is negative for antimatter implies that vacuum extremals are vacua
only with respect to the inertial four-momentum and have a non-vanishing gravitational four-
momentum. Hence, in the approximation that the net density of inertial mass vanishes, vacuum
extremals provide the proper manner to model matter, and the identification of the ansatz for a
spherically symmetric extremal as the counterpart of Scwhartschild metric is certainly not possible.
It is however useful to show explicitly that the identification is indeed unrealistic. The solution is
consistent with Equivalence Principle but the electro-weak gauge forces are considerably weaker
than gravitational forces. A wrong perihelion shift is also predicted so that the identification as
an exterior metric of macroscopic objects is out of question.

1. Is Equivalence Principle respected?

The following calculation demonstrates that Equivalence Principle might not be satisfied for
the solution ansatz (which need not actually define a preferred extremal!).

The gravitational mass of the solution is determined from the asymptotic behavior of g;; and
is given by

R2
Mgy = o Wt (2.5.27)

and is proportional to the Kahler charge g of the solution.

One can estimate the gravitational mass density also by applying Newtonian approximation
to the time component of the metric g,y = 1 — 2®4,.. One obtains ®,, corresponds in the lowest
order approximation to a solution of Einstein’s equations with the source consisting of a mass point
at origin and the energy density of the Kéahler electric field. The effective value of gravitational
constant is however G¢y = 8R%ak. Thus the only sensible interpretation is that the density of
Kéhler (inertial) energy is only a fraction G/G.q = € ~ .22 x 107° of the density of gravitational
mass. Hence the densities of positive energy matter and negative energy antimatter cancel each
other in a good approximation.

The work with cosmic strings lead to a possible interpretation of the solution as a space-time
sheet containing topologically condensed magnetic flux tube idealizable as a point. The negative
Kahler electric action must cancel the positive Kahler magnetic action. The resulting structure in
turn can condense to a vacuum extremal and Schwartshild metric is a good approximation for the
metric.

One can estimate the contribution of the exterior region (r > r.) to the inertial mass of the
system and Equivalence principle requires this to be a fraction of order e about the gravitational
mass unless the region r < r. contains negative inertial mass density, which is of course quite
possible. Approximating the metric with a flat metric and using first order approximation for u(r)
the energy reduces just to the standard Coulomb energy of charged sphere with radius 7.

Mj(ext) = 32730% - E?\Jgdx
T 2akT.
R2
A = \/1 + Tuﬂ(l —u) (>1) . (2.5.28)

Approximating the metric with flat metric the contribution of the region r > r. to the energy of
the solution is given by
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1
M;(ext) = %)\qw(l+|um\) . (2.5.29)

The contribution is proportional to Kahler charge as expected. The ratio of external inertial and
gravitational masses is given by the expression

My(ext) G .
Mgr n 4R2aK ’
1 o0
r = (+|“||)>1. (2.5.30)
Uoo

In the approximation used the the ratio of external inertial and gravitational masses is of order
1079 for R ~ 10*v/G implied by the p-adic length scale hypothesis and for  ~ 1. The result
conforms with the above discussed interpretation.

The result forces to challenge the underlying implicit assumptions behind the calculation.

1. Many-sheeted space-time means that single space-time sheet need not be a good approxi-
mation for astrophysical systems. The GRT limit of TGD can be interpreted as obtained
by lumping many-sheeted space-time time to Minkowski space with effective metric defined
as sum M? metric and sum of deviations from AM?* metric for various space-time sheets
involved [K81]. This effective metric should correspond to that of General Relativity and
Einstein’s equations reflect the underlying Poincare invariance. Gravitational and cosmolog-
ical constants follow as predictions and EP is satisfied.

2. The systems considered need not be preferred extremals of Kéhler action so that one cannot
take the results obtained too seriously. For vacuum extremals one does not encounter this
problem at all and it could be that vacuum extremals with induced metric identified as
GRT metric are a good approximation in astrophysical systems. This requires that single-
sheetedness is a good approximation. TGD based single-sheeted models for astrophysical
and cosmological systems rely on this assumption.

2. Z° and electromagnetic forces are much weaker than gravitational force

The extremal in question carries Kéhler charge and therefore also Z° and electromagnetic
charge. This implies long range gauge interactions, which ought to be weaker than gravitational
interaction in the astrophysical scales. This is indeed the case as the following argument shows.

Expressing the Kéhler charge using Planck mass as unit and using the relationships between
gauge fields one obtains a direct measure for the strength of the Z° force as compared with the
strength of gravitational force.

QZ = €ZMgT\/a .
(2.5.31)

The value of the parameter £z should be smaller than one. A transparent form for this condition
is obtained, when one writes ® = wt = Qm° : Q = w:

[(67:¢ 1 G
_ 9K W= 2.5.32
°z az T(1+ |us|)QRV R ( )
The order of magnitude is determined by the values of the parameters \/% ~ 107* and QR.

Global Minkowskian signature of the induced metric implies the condition QR < 2 for the allowed
values of the parameter QLR. In macroscopic length scales one has QR ~ 1 so that Z° force is by
a factor of order 10~* weaker than gravitational force. In elementary particle length scales with
w ~ m situation is completely different as expected.
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8. The shift of the perihelion is predicted incorrectly

The g, component of Reissner-Nordstrom and TGD metrics are given by the expressions

and

2
—
|
€
)

Grr (2.5.34)

respectively. For reasonable values of ¢, w and u., the this terms is extremely small as compared
with 1/r term so that these expressions differ by 1/r term.

The absence of the 1/r term from g,,-component of the metric predicts that the shift of the
perihelion for elliptic plane orbits is about 2/3 times that predicted by GRT so that the identifica-
tion as a metric associated with objects of a planetary scale leads to an experimental contradiction.
Reissner-Nordstrom solutions are obtained as vacuum extremals so that standard predictions of
GRT are obtained for the planetary motion.

One might hope that the generalization of the form of the spherically symmetric ansatz by
introducing the same modification as needed for the imbedding of Reissner-Nordstrim metric might
help. The modification would read as

cos(®) = wu(r) ,
= wt+f(r),
m® = M+h(r),
ry = 1, Oy=0, ouy=0¢ . (2.5.35)

The vanishing of the g component of the metric gives the condition

2
)@Th—RTsinQ(@)warf = 0. (2.5.36)

The expression for the radial component of the metric transforms to

R2 R2
g =~ Oh*—1-— Z(a,n@)2 — Tsirf(@)&«fz , (2.5.37)
Essentially the same perihelion shift as for Schwartschild metric is obtained if g, approaches
asymptotically to its expression for Schwartschild metric. This is guaranteed if the following
conditions hold true:

2, .2
f(r)r—>oo — wr, A2 —1= RFw 52712(("‘)00) < 2?];4' .
r

4
In the second equation (r) corresponds to the average radius of the planetary orbit.

The field equations for this ansatz can be written as conditions for energy momentum and color
charge conservation. Two equations are enough to determine the functions ©(r) and f(r). The
equation for momentum conservation is same as before. Second field equation corresponds to the
conserved isometry current associated with the color isometry ® — ® 4 € and gives equation for f.

(2.5.38)

[Trrf_rr&pq;.\/g]’r = 0. (2539)
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The conservation laws associated with other infinitesimal SU(2) rotations of S? should be satisfied
identically. This equation can be readily integrated to give

C
I frsoa\/Gugrr = R (2.5.40)

Unfortunately, the result is inconsistent with the 1/r* behavior of T"" and f — wr implies by
correct red shift.

It seems that the only possible way out of the difficulty is to replace spherical symmetry with
a symmetry with respect to the rotations around z-axis. The simplest modification of the solution
ansatz is as follows:

ml =X+h(p) , ®=wt+kp

Thanks to the linear dependence of ® on p, the conservation laws for momentum and color isospin
reduce to the same condition. The ansatz induces a small breaking of spherical symmetry by
adding to g,, the term

R2
(9,h)* — Tsm?(@)kz :
One might hope that in the plane § = 7/2, where r = p holds true, the ansatz could behave like
Schwartschild metric if the conditions discussed above are posed (including the condition k = w).
The breaking of the spherical symmetry in the planetary system would be coded already to the
gravitational field of Sun.

Also the study of the imbeddings of Reissner-Nordstrom metric as vacuum extremals and the
investigation of spherically symmetric (inertial) vacuum extremals for which gravitational four-
momentum is conserved [K81] leads to the conclusion that the loss of spherical symmetry due to
rotation is inevitable characteristic of realistic solutions.

2.5.6 Maxwell hydrodynamics as a toy model for TGD

The field equations of TGD are extremely non-linear and all known solutions have been discov-
ered by symmetry arguments. Chern-Simons term plays essential role also in the construction of
solutions of field equations and at partonic level defines braiding for light-like partonic 3-surfaces
expected to play key role in the construction of S-matrix. The inspiration for this section came
from Terence Tao’s blog posting 2006 ICM: Etienne Ghys, ”Knots and dynamics” [A62] giving an
elegant summary about amazing mathematical results related to knots, links, braids and hydrody-
namical flows in dimension D = 3. Posting tells about really amazing mathematical results related
to knots.

Chern-Simons term as helicity invariant

Tao mentions helicity as an invariant of fluid flow. Chern-Simons action defined by the induced
Kéhler gauge potential for light-like 3-surfaces has interpretation as helicity when Kéhler gauge
potential is identified as fluid velocity. This flow can be continued to the interior of space-time
sheet. Also the dual of the induced Kahler form defines a flow at the light-like partonic surfaces
but not in the interior of space-time sheet. The lines of this flow can be interpreted as magnetic
field lines. This flow is incompressible and represents a conserved charge (K&hler magnetic flux).

The question is which of these flows should define number theoretical braids. Perhaps both
of them can appear in the definition of S-matrix and correspond to different kinds of partonic
matter (electric/magnetic charges, quarks/leptons?,...). Second kind of matter could not flow in
the interior of space-time sheet. Or could interpretation in terms of electric magnetic duality make
sense?

Helicity is not gauge invariant and this is as it must be in TGD framework since C' P, symplectic
transformations induce U(1) gauge transformation, which deforms space-time surface an modifies
induced metric as well as classical electroweak fields defined by induced spinor connection. Gauge
degeneracy is transformed to spin glass degeneracy.
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Maxwell hydrodynamics

In TGD Maxwell’s equations are replaced with field equations which express conservation laws and
are thus hydrodynamical in character. With this background the idea that the analogy between
gauge theory and hydrodynamics might be applied also in the reverse direction is natural. Hence
one might ask what kind of relativistic hydrodynamics results if assumes that the action principle
is Maxwell action for the four-velocity u® with the constraint term saying that light velocity is
maximal signal velocity.

1.

For massive particles the length of four-velocity equals to 1: u“u, = 1. In massless case one
has u®u, = 0. Geometrically this means that one has sigma model with target space which
is 3-D Lobatschevski space or at light-cone boundary. This condition means the addition of
constraint term

AMu®uq — €) (2.5.41)

to the Maxwell action. € = 1/0 holds for massive/massless flow. In the following the notation
of electrodynamics is used to make easier the comparison with electrodynamics.

The constraint term destroys gauge invariance by allowing to express A° in terms of A’
but in general the constraint is not equivalent to a choice of gauge in electrodynamics since
the solutions to the field equations with constraint term are not solutions of field equations
without it. One obtains field equations for an effectively massive em field with Lagrange
multiplier A\ having interpretation as photon mass depending on space-time point:

J* = 0sF* =A™,
AY = u® | FP =90 A% —9°A° | (2.5.42)

In electrodynamic context the natural interpretation would be in terms of spontaneous mas-
sivation of photon and seems to occur for both values of €. The analog of em current given
by AA® is in general non-vanishing and conserved. This conservation law is quite strong
additional constraint on the hydrodynamics. What is interesting is that breaking of gauge
invariance does not lead to a loss of charge conservation.

One can solve A by contracting the equations with A, to obtain

A=Jj"Aa

for e = 1. For € = 0 one obtains

jaAoz =0

stating that the field does not dissipate energy: A can be however non-vanishing unless field
equations imply 7% = 0. One can say that for ¢ = 0 spontaneous massivation can occur.
For ¢ = 1 massivation is present from the beginning and dissipation rate determines photon
mass: a natural interpretation for e = 1 would be in terms of thermal massivation of photon.
Non-tachyonicity fixes the sign of the dissipation term so that the thermodynamical arrow
of time is fixed by causality.

For ¢ = 0 massless plane wave solutions are possible and one has

Da0s AP = A, .

A = 0 is obtained in Lorentz gauge which is consistent with the condition € = 0. Also super-
positions of plane waves with same polarization and direction of propagation are solutions
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of field equations: these solutions represent dispersionless precisely targeted pulses. For su-
perpositions of plane waves A\ with 4-momenta, which are not all parallel A is non-vanishing
so that non-linear self interactions due to the constraint can be said to induce massivation.
In asymptotic states for which gauge symmetry is not broken one expects a decomposition
of solutions to regions of space-time carrying this kind of pulses, which brings in mind final
states of particle reactions containing free photons with fixed polarizations.

. Gradient flows satisfying the conditions

Ay = 0.0, AA, =¢ (2.5.43)

give rise to identically vanishing hydrodynamical gauge fields and A = 0 holds true. These
solutions are vacua since energy momentum tensor vanishes identically. There is huge number
of this kind of solutions and spin glass degeneracy suggests itself. Small deformations of these
vacuum flows are expected to give rise to non-vacuum flows.

. The counterparts of charged solutions are of special interest. For € = 0 the solution (u",u") =

(Q/r)(1,1) is a solution of field equations outside origin and corresponds to electric field of a
point charge Q. In fact, for € = 0 any ansatz (u®,u™) = f(r)(1, 1) satisfies field equations for a
suitable choice of A(7) since the ratio of equations associate with j° and j” gives an equation
which is trivially satisfied. For e = 1 the ansatz (u’,u") = (cosh(u), sinh(u)) expressing
solution in terms of hyperbolic angle linearizes the field equation obtained by dividing the
equations for j° and ;" to eliminate A\. The resulting equation is

0u + =0

20,u
r
for ordinary Coulomb potential and one obtains (u°,u") = (cosh(ug + k/r), sinh(ug + k/r)).
The charge of the solution at the limit » — oo approaches to the value Q = sinh(ug)k and
diverges at the limit » — 0. The charge increases exponentially as a function of 1/r near
origin rather than logarithmically as in QED and the interpretation in terms of thermal
screening suggests itself. Hyperbolic ansatz might simplify considerably the field equations

also in the general case.

Similarities with TGD

There are strong similarities with TGD which suggests that the proposed model might provide a
toy model for the dynamics defined by Kéhler action.

1. Also in TGD field equations are essentially hydrodynamical equations stating the conserva-

tion of various isometry charges. Gauge invariance is broken for the induced Kahler field
although Kahler charge is conserved. There is huge vacuum degeneracy corresponding to
vanishing of induced Kéhler field and the interpretation is in terms of spin glass degeneracy.

. Also in TGD dissipation rate vanishes for the known solutions of field equations and a possible

interpretation is as space-time correlates for asymptotic non-dissipating self organization
patterns.

. In TGD framework massless extremals represent the analogs for superpositions of plane waves

with fixed polarization and propagation direction and representing targeted and dispersion-
less propagation of signal. Gauge currents are light-like and non-vanishing for these solutions.
The decomposition of space-time surface to space-time sheets representing particles is much
more general counterpart for the asymptotic solutions of Maxwell hydrodynamics with van-
ishing A.



2.6. Weak form electric-magnetic duality and its implications 93

4. In TGD framework one can consider the possibility that the four-velocity assignable to a
macroscopic quantum phase is proportional to the induced Kahler gauge potential. In this
kind of situation one could speak of a quantal variant of Maxwell hydrodynamics, at least
for light-like partonic 3-surfaces. For instance, the condition

DDaU =0 , DoV = (9 — iqrAg)V

for the order parameter of the quantum phase corresponds at classical level to the condition
Pt = qrQ“ + 1%, where qx is Kahler charge of fermion and [ is a light-like vector field
naturally assignable to the partonic boundary component. This gives u®* = (¢gxQ® +1%)/m,
m? = p®p,, which is somewhat more general condition. The expressibility of u® in terms of

the vector fields provided by the induced geometry is very natural.

The value € depends on space-time region and it would seem that also ¢ = —1 is possible
meaning tachyonicity and breaking of causality. Kahler gauge potential could however have
a time-like pure gauge component in M* possibly saving the situation. The construction
of quantum TGD at parton level indeed forces to assume that Kéhler gauge potential has
Lorentz invariant M* component A, = constant in the direction of the light-cone proper time
coordinate axis a. Note that the decomposition of WCW to sectors consisting of space-time
sheets inside future or past light-cone of M* is an essential element of the construction of
WCW geometry and does not imply breaking of Poincare invariance. Without this component
uau® could certainly be negative. The contribution of M* component could prevent this for
preferred extremals.

If TGD is taken seriously, these similarities force to ask whether Maxwell hydrodynamics might
be interpreted as a nonlinear variant of electrodynamics. Probably not: in TGD em field is
proportional to the induced Kéhler form only in special cases and is in general non-vanishing also
for vacuum extremals.

2.6 Weak form electric-magnetic duality and its implica-
tions

The notion of electric-magnetic duality [B12] was proposed first by Olive and Montonen and is
central in N/ = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary
particles are two different phases of theory and that the description in terms of monopoles can be
applied at the limit when the running gauge coupling constant becomes very large and perturbation
theory fails to converge. The notion of electric-magnetic self-duality is more natural since for
CP, geometry Kéhler form is self-dual and Kéahler magnetic monopoles are also Kahler electric
monopoles and Kéhler coupling strength is by quantum criticality renormalization group invariant
rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged
already two decades ago in the attempts to formulate the Kahler geometric of world of classical
worlds. Quite recently a considerable step of progress took place in the understanding of this
notion [K20] . What seems to be essential is that one adopts a weaker form of the self-duality
applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this con-
cept leads to precise predictions. The point is that elementary particles do not generate monopole
fields in macroscopic length scales: at least when one considers visible matter. The first question is
whether elementary particles could have vanishing magnetic charges: this turns out to be impossi-
ble. The next question is how the screening of the magnetic charges could take place and leads to
an identification of the physical particles as string like objects identified as pairs magnetic charged
wormhole throats connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.
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2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,—1,—1) and could
be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that ele-
mentary particles are string like objects: this could become manifest at LHC energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kahler leads
to the reduction of Kéhler action to Chern-Simons action so that TGD reduces to almost
topological QFT and that Kéahler function is explicitly calculable. This has enormous impact
concerning practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that
all isometry currents are proportional to Kéhler current which is integrable in the sense that
the flow parameter associated with its flow lines defines a global coordinate. The proposed
solution ansatz would describe a hydrodynamical flow with the property that isometry charges
are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability
conditions is found.

The strongest form of the solution ansatz states that various classical and quantum currents
flow along flow lines of the Beltrami flow defined by Kéhler current (Kéhler magnetic field
associated with Chern-Simons action). Intuitively this picture is attractive. A more general
ansatz would allow several Beltrami flows meaning multi-hydrodynamics. The integrability
conditions boil down to two scalar functions: the first one satisfies massless d’Alembert
equation in the induced metric and the the gradients of the scalar functions are orthogonal.
The interpretation in terms of momentum and polarization directions is natural. Also Chern-
Simons Dirac equation implies the localization of solutions to flow lines, and this is consistent
with the localization solutions of Kéhler-Dirac equation to string world sheets.

2.6.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW metric. A
weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats
at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Num-
ber theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint
could be enough to fix the initial values of time derivatives of the imbedding space coordinates in
the space-time regions with Minkowskian resp. Euclidian signature of the induced metric. This
is a condition on modified gamma matrices and hyper-quaternionicity states that they span a
hyper-quaternionic sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kahler form of WCW in terms of
the Kihler fluxes weighted by Hamiltonians of M1 at the partonic 2-surface X? looks very
attractive. These expressions however carry no information about the 4-D tangent space of
the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory,
which cannot hold true. One would like to code to the WCW metric also information about
the electric part of the induced Ké&hler form assignable to the complement of the tangent
space of X2 C X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial
manner to get electric magnetic duality at the level of the full theory would be via the
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identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The
presence of the induced metric is however troublesome since the presence of the induced
metric means that the simple transformation properties of flux Hamiltonians under symplectic
transformations -in particular color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM
theory this duality allows to solve field equations exactly in terms of instantons. This ap-
proach involves also quaternions. These arguments suggest that the duality in some form
might work. The full electric magnetic duality is certainly too strong and implies that space-
time surface at the partonic 2-surface corresponds to piece of C P, type vacuum extremal
and can hold only in the deep interior of the region with Euclidian signature. In the region
surrounding wormhole throat at both sides the condition must be replaced with a weaker
condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x°, 3,1, 2?)

such (2!, 22) define coordinates for the partonic 2-surface and (2°,23) define coordinates
labeling partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces
and string world sheets making sense in the regions of space-time sheet with Minkowskian
signature. The assumption about the slicing allows to preserve general coordinate invariance.
The weakest condition is that the generalized Kahler electric fluxes are apart from constant
proportional to Kéhler magnetic fluxes. This requires the condition

J% g = KJia . (2.6.1)

A more general form of this duality is suggested by the considerations of [K40] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kéhler function for
preferred extremals to Chern-Simons terms [B5] at the boundaries of CD and at light-like
wormhole throats. This form is following

JP g2 = Kex Pl s /g1 . (2.6.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary
of CD or for light-like wormhole throat. € is a sign factor which is opposite for the two ends of
CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note
that the dependence on induced metric disappears at the right hand side and this condition
eliminates the potentials singularity due to the reduction of the rank of the induced metric
at wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if
Kahler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je+JIm = (1+K)J12 , (263)

where J denotes the Kahler magnetic flux, , makes it possible to have a non-trivial WCW
metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kahler magnetic fields. This condition suggests that it can depend only on
Kahler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant
then K could be a non-constant function of X? depending on string world sheet coordinates.
The light-like radial coordinate of the light-cone boundary indeed defines a symplectically
invariant slicing and this slicing could be shifted along the time axis defined by the tips of
CD.
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Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are ob-
tained if one assumes that the quantization of electro-weak charges reduces to this condition at
classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux

Qm:%}z{Bdszn .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z° fields in terms of Kéhler form [L1] , [L1]

read as
F.
No= 6% =3J — sin®(0w)Ro3 ,
F
70 = gzhz = 2Rp3 . (2.6.4)

Here Ry3 is one of the components of the curvature tensor in vielbein representation and F,,
and Fz correspond to the standard field tensors. From this expression one can deduce

€ . 9z
= —F.n, 2O0w)=Fy . 2.6.
J 3 ,,+5m(w)6h ' (2.6.5)

3. The weak duality condition when integrated over X?2 implies

2 2
%Qem""%QZ,V = K%J:Kn ,
1'3
Qzv = 5 —Qem . p=sin’(Ow) . (2.6.6)

Here the vectorial part of the Z° charge rather than as full Z° charge Qz = I3 +sin? (0w )Qem
appears. The reason is that only the vectorial isospin is same for left and right handed
components of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths
and using h = rhg one can write

«a 3
aeerm + pTZQZ,V = — xrmmK )

4
e? 9% Qem
em 5 = = 2.6.7
@ Anho % T Anhe  p(1—p) (26.7)

4. There is a great temptation to assume that the values of Q.,, and Yz correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-
surface. The linear coupling of the modified Dirac operator to conserved charges implies
correlation between the geometry of space-time sheet and quantum numbers assigned to the
partonic 2-surface. The assumption of standard quantized values for Q.,, and @z would
be also seen as the identification of the fine structure constants «.,, and az. This however
requires weak isospin invariance.
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The value of K from classical quantization of Kahler electric charge

The value of K can be deduced by requiring classical quantization of Kéahler electric charge.

1. The condition that the flux of F9 = (h/gx)J? defining the counterpart of Kéhler electric
field equals to the Kéhler charge gx would give the condition K = g% /h, where g is Kéhler
coupling constant which should invariant under coupling constant evolution by quantum
criticality. Within experimental uncertainties one has ax = g% /4mhy = Qem ~ 1/137, where
Qem, 18 finite structure constant in electron length scale and Ay is the standard value of Planck
constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most gen-
eral quantization of r is as rationals but there are good arguments favoring the quantization
as integers corresponding to the allowance of only singular coverings of CD andn CP,. The
point is that in this case a given value of Planck constant corresponds to a finite number
pages of the "Big Book”. The quantization of the Planck constant implies a further quan-
tization of K and would suggest that K scales as 1/r unless the spectrum of values of Qe
and Qz allowed by the quantization condition scales as r. This is quite possible and the
interpretation would be that each of the r sheets of the covering carries (possibly same) el-
ementary charge. Kind of discrete variant of a full Fermi sphere would be in question. The
interpretation in terms of anyonic phases [K59] supports this interpretation.

3. The identification of J as a counterpart of eB/h means that Kéhler action and thus also
Kéhler function is proportional to 1/ak and therefore to A. This implies that for large
values of h Kihler coupling strength g% /4m becomes very small and large fluctuations are
suppressed in the functional integral. The basic motivation for introducing the hierarchy of
Planck constants was indeed that the scaling « — «/r allows to achieve the convergence
of perturbation theory: Nature itself would solve the problems of the theoretician. This of
course does not mean that the physical states would remain as such and the replacement of
single particles with anyonic states in order to satisfy the condition for K would realize this
concretely.

4. The condition K = g% /h implies that the Kéhler magnetic charge is always accompanied by
Kahler electric charge. A more general condition would read as

K = nx2 nez. (2.6.8)

This would apply in the case of cosmic strings and would allow vanishing K&hler charge
possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for
both leptons and quarks) so that Kéhler electric charge should vanish. For instance, for
neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition that
abelian Z° flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

1
K = . 2.6.9
hbar ( )

In fact, the self-duality of C'P, Kéhler form favours this boundary condition at the Euclidian side
of the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic
charges in Euclidian region since all charges are magnetic can be used to argue in favor of this
form. The same constraint arises from the condition that the action for C' P, type vacuum extremal
has the value required by the argument leading to a prediction for gravitational constant in terms
of the square of C'P, radius and ag the effective replacement g% — 1 would spoil the argument.
The boundary condition Jg = Jp for the electric and magnetic parts of Kahlwer form at the
Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could
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be self-dual so that the density of Kéhler action would be just the instanton density. Self-duality
follows if the deformation of the metric induced by the deformation of the canonically imbedded
CP; is such that in CP, coordinates for the Euclidian region the tensor (¢*’g"” — g™ g"?)/,/g
remains invariant. This is certainly the case for C'P, type vacuum extremals since by the light-
likeness of M* projection the metric remains invariant. Also conformal scalings of the induced
metric would satisfy this condition. Conformal scaling is not consistent with the degeneracy of the
4-metric at the wormhole.

Reduction of the quantization of Kahler electric charge to that of electromagnetic
charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kahler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Ké&hler charge. This would replace induced Kahler form with electromagnetic field,
which is a linear combination of induced Kahler field and classical Z° field

D 3J—Sin29wR03 5
Z° = 2Ry . (2.6.10)

Here Zy = 2R3 is the appropriate component of C' P, curvature form [L1]. For a vanishing
Weinberg angle the condition reduces to that for Kéhler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman
diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle
could however vanish. If so, the condition guaranteeing that electromagnetic charge of the
partonic 2-surfaces equals to the above condition stating that the em charge assignable to
the fermion content of the partonic 2-surfaces reduces to the classical Kéhler electric flux
at the Minkowskian side of the wormhole throat. One can argue that Weinberg angle must
increase smoothly from a vanishing value at both sides of wormhole throat to its value in the
deep interior of the Euclidian region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical
intuition. Above elementary particle length scales one sees only the classical electric field
reducing to the induced Kahler form and classical Z° fields and color gauge fields are effec-
tively absent. Only in phases with a large value of Planck constant classical Z° field and
other classical weak fields and color gauge field could make themselves visible. Cell mem-
brane could be one such system [K64]. This conforms with the general picture about color
confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the K&hler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would
naturally correspond to Einstein-Maxwell theory with cosmological constant which is non-
vanishing only in Euclidian regions of space-time so that both Reissner-Nordstréom metric and
C'P;, are allowed as simplest possible solutions of field equations [K81]. The extremely small
value of the observed cosmological constant needed in GRT type cosmology could be equal
to the large cosmological constant associated with C'P» metric multiplied with the 3-volume
fraction of Euclidian regions.
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3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmo-
logical constant term in Euclidian regions. The weak form of electric-magnetic duality would
guarantee also now the preferred extremal property and prevent the reduction to a mere
topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of C' P, makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.

2.6.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it
with some very general empirical facts such as the non-existence of magnetic monopole fields in
macroscopic length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale
and one should have a mechanism neutralizing the monopole charge. How electroweak interactions
become short ranged in TGD framework is still a poorly understood problem. What suggests itself
is the neutralization of the weak isospin above the intermediate gauge boson Compton length by
neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be
a wormhole throat. If the magnetically charged wormhole contact is electromagnetically
neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion
only the electromagnetic charge of the fermion is visible on longer length scales. The distance
of this wormhole throat from the fermionic one should be of the order weak boson Compton
length. An interpretation as a bound state of fermion and a wormhole throat state with the
quantum numbers of a neutral Higgs boson would therefore make sense. The neutralizing
throat would have quantum numbers of X_1/2 = vpvg or X5 = Vpvr. v VR would
not be neutral Higgs boson (which should correspond to a wormhole contact) but a super-
partner of left-handed neutrino obtained by adding a right handed neutrino. This mechanism
would apply separately to the fermionic and anti-fermionic throats of the gauge bosons and
corresponding space-time sheets and leave only electromagnetic interaction as a long ranged
interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats
feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats
must always appear as pairs such that for the second member of the pair monopole charges
and I‘S, cancel each other at both space-time sheets involved so that one obtains at both
space-time sheets magnetic dipoles of size of weak boson Compton length. The proposed
magnetic character of fundamental particles should become visible at TeV energies so that
LHC might have surprises in store!

Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is very
natural constraint and not trivially satisfied because classical W boson fields are present. As a
matter fact, all weak fields should be effectively absent above weak scale. How this is possible
classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time region
in which spinor mode is non-vanishing has 2-D C'P, projection such that the induced W boson
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fields are vanishing. The vanishing of classical Z° field can be poses as additional condition - at
least in scales above weak scale. In the generic case this requires that the spinor mode is restricted
to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies that TGD
reduces to string model in fermionic sector. Even for preferred extremals with 2-D projecting
the modes are expected to allow restriction to 2-surfaces. This localization is possible only for
Kahler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced metrics
of space-time sheets from Minkowski metric. For gauge potentials a similar identification applies.
YM-Einstein equations coupled with matter and with non-vanishing cosmological constant are
expected on basis of Poincare invariance. One cannot exclude the possibility that the sums of
weak gauge potentials from different space-time sheet tend to vanish above weak scale and that
well-definedness of em charge at classical level follows from the effective absence of classical weak
gauge fields.

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and
quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This
would mean that magnetic charges of the state qii/2 — X+1/2 representing the physical quark
would not vanish and magnetic confinement would accompany also color confinement. This would
explain why free quarks are not observed. To how degree then quark confinement corresponds to
magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kéahler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (£2,F1,F1). This brings in mind the spectrum
of color hyper charges coming as (+2,¥F1,F1)/3 and one can indeed ask whether color hyper-
charge correlates with the Kahler magnetic charge. The geometric picture would be three strings
connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to
color hyper charge popped up during the first year of TGD when I had not yet discovered C'P;
and believed on M* x S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of v/2 in the most
general case. The dark variants of the particle would have the same mass as the original one. In
particular, Mersenne primes M = 2 — 1 and Gaussian Mersennes Mg =1+ i)k — 1 has been
proposed to define zoomed copies of these physics. At the level of magnetic confinement this would
mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime Mgg should define a scaled up variant of
the ordinary hadron physics with mass scaled up roughly by a factor 2(107-89/2 — 512 The size
scale of color confinement for this physics would be same as the weal length scale. It would look
more natural that the weak confinement for the quarks of Mgg physics takes place in some shorter
scale and Mg, is the first Mersenne prime to be considered. The mass scale of Mg; weak bosons
would be by a factor 2(89=61)/2 = 214 higher and about 1.6 x 10* TeV. Mgy quarks would have
virtually no weak interactions but would possess color interactions with weak confinement length
scale reflecting themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many
as four scaled up electron Compton lengths L. (k) = v/5L(k): they are associated with Gaussian
Mersennes M¢ i, k = 151,157,163,167. This would suggest that the existence of scaled up scales
of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is
the existence of magnetic monopole pairs with the size scale in this range. There are recent claims
about experimental evidence for magnetic monopole pairs [DS§] .
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Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that the
descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions
would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs
of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction
between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and
anti-fermions at the wormhole throat but these do not give rise to graviton like states [K32] . The
upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion
pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission
in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole
charges are necessary but now there is no need to assign the entities X4 with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime Mi57. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology
could allow some very simple description allowing perhaps to get rid of the problematic aspects of
Feynman diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make
possible twistor description of virtual particles allowing only massless particles (in 4-D sense
usually and in 8-D sense in TGD framework). The notion of virtual fermion makes sense
only if one assumes in the interaction region a topological condensation creating another
wormhole throat having no fermionic quantum numbers.

2. The addition of the particles X* replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X, /s.
The members of these pairs would correspond to 3-D light-like surfaces glued together at the
vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of
the string to form shorter strings but the replication of the entire string to form two strings
with same length or fusion of two strings to single string along all their points rather than
along ends to form a longer string. It is not clear whether the duality symmetry of stringy
diagrams can hold true for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X*? Should one
describe the state as superposition of non-parallel on mass shell states so that the composite
state would be automatically massive? The description as superposition of on mass shell
states does not conform with the idea that bound state formation requires binding energy.
In TGD framework the notion of negentropic entanglement has been suggested to make
possible the analogs of bound states consisting of on mass shell states so that the binding
energy is zero [K50] . If this kind of states are in question the description of virtual states in
terms of on mass shell states is not lost. Of course, one cannot exclude the possibility that
there is infinite number of this kind of states serving as analogs for the excitations of string
like object.
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4. What happens to the states formed by fermions and X.,,, in the internal lines of the
Feynman diagram? Twistor philosophy suggests that only the higher on mass shell excitations
are possible. If this picture is correct, the situation would not change in an essential manner
from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become manifest
at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about
physics at LHC energies [K51] .

2.6.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces
to almost topological quantum theory in the sense that the counterpart of Chern-Simons action as-
signed with the wormhole throats somehow dictates the dynamics. This proposal can be formulated
also for the modified Dirac action action. I gave up this proposal but the following argument shows
that Kahler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons
action plus Coulomb term.

1. Kahler action density can be written as a 4-dimensional integral of the Coulomb term j% A,
plus and integral of the boundary term JnﬁAﬁq/gzl over the wormhole throats and of the
quantity J% Ag,/gs over the ends of the 3-surface.

2. If the self-duality conditions generalize to J™# = 47raKe”575J75 at throats and to J%° =
dmage®P% ] s at the ends, the Kihler function reduces to the counterpart of Chern-Simons
action evaluated at the ends and throats. It would have same value for each branch and the
replacement fig — rhy would effectively describe this. Boundary conditions would however
give 1/r factor so that h would disappear from the Kahler function! The original attempt to
realize quantum TGD as an almost topological QFT was in terms of Chern-Simons action
but was given up. It is somewhat surprising that Kéahler action gives Chern-Simons action
in the vacuum sector defined as sector for which Kéahler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to
an almost topological QFT. The attribute ”almost” would come from the fact that one has non-
vanishing classical Noether charges defined by Kéhler action and non-trivial quantum dynamics in
M* degrees of freedom. One could also assign to space-time surfaces conserved four-momenta which
is not possible in topological QFTs. For this reason the conditions guaranteeing the vanishing of
Coulomb interaction term deserve a detailed analysis.

1. For the known extremals j% either vanishes or is light-like ("massless extremals” for which
weak self-duality condition does not make sense [K11] ) so that the Coulomb term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the
ends and wormhole throats of the space-time surface but this term must be cancelled by the
other boundary terms by gauge invariance of Kahler action. This implies that the M* part of
WCW metric vanishes in this case. Therefore massless extremals as such are not physically
realistic: wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on C'P» coor-
dinates only, its variation with respect to Minkowski coordinates must vanish so that the
WCW metric would be trivial in M* degrees of freedom. This conclusion is in conflict with
quantum classical correspondence and was indeed too hasty. The point is that the allowed
variations of Kéahler function must respect the weak electro-magnetic duality which relates
Kahler electric field depending on the induced 4-metric at 3-surface to the Kahler magnetic
field. Therefore the dependence on M* coordinates creeps via a Lagrange multiplier term

/ Ao (J™ — K€" 5 gamma)/gad>x (2.6.11)
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The (1,1) part of second variation contributing to M* metric comes from this term.

3. This erratic conclusion about the vanishing of M* part WCW metric raised the question
about how to achieve a non-trivial metric in M* degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides C'P, Kéhler form
there would be the Kéhler form assignable to the light-cone boundary reducing to that for
ry = constant sphere - call it J'. The generalization of the weak form of self-duality
would be J"? = e"ﬂV‘SK(JW; + 6J$5). This form implies that the boundary term gives a
non-trivial contribution to the M* part of the WCW metric even without the constraint
from electric-magnetic duality. Kahler charge is not affected unless the partonic 2-surface
contains the tip of CD in its interior. In this case the value of Kéhler charge is shifted by a
topological contribution. Whether this term can survive depends on whether the resulting
vacuum extremals are consistent with the basic facts about classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good
news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation ¢ is

%000 = —j%Aqy . (2.6.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jx by using dz®/dt = j%. Global solution is obtained only if one can combine the flow
parameter ¢ with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential
is proportional to the covariant form of Kéhler current: dt = ¢ji. This condition in turn
implies d*t = d(¢jx) = d(¢jx) = dé A jx + ¢djx = 0 implying jx A djx = 0 or more
concretely,

05K, i e = 0 (2.6.13)

Jji is a four-dimensional counterpart of Beltrami field [B54] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kéahler
action [K11] . The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jx A J = 0. One manner to guarantee this is the
topologization of the Kahler current meaning that it is proportional to the instanton current:
jx = ¢jr, where j; = *(J A A) is the instanton current, which is not conserved for 4-D CP,
projection. The conservation of jx implies the condition j§0,¢ = 0,j%¢ and from this ¢ can
be integrated if the integrability condition j; Adj; = 0 holds true implying the same condition
for jx. By introducing at least 3 or C'P, coordinates as space-time coordinates, one finds that
the contravariant form of j; is purely topological so that the integrability condition fixes the
dependence on M* coordinates and this selection is coded into the scalar function ¢. These
functions define families of conserved currents j5% ¢ and j{¢ and could be also interpreted as
conserved currents associated with the critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A — A+ V¢ for which the scalar function the integral [ j%8,¢ reduces to a total divergence
a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

Do(j*¢) = 0 . (2.6.14)
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As a consequence Coulomb term reduces to a difference of the conserved charges Qf =
J 3°¢\/gad*x at the ends of the CD vanishing identically. The change of the Chern-Simons
type term is trivial if the total weighted Kahler magnetic flux QF' = >~ | Jpd A over wormhole
throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the modified Dirac
interaction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kédhler gauge potential of C'P,. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
charges would provide a representation for the charges associated with the infinitesimal criti-
cal deformations not affecting Kahler action. The gauge transformed Kéhler gauge potential
couples to the modified Dirac equation and its effect could be visible in the value of Kahler
function and therefore also in the properties of the preferred extremal. The effect on WCW
metric would however vanish since K would transform only by an addition of a real part of
a holomorphic function.

7. A first guess for the explicit realization of the quantum classical correspondence between
quantum numbers and space-time geometry is that the deformation of the preferred ex-
tremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of 6C'D x C'P, generating the gauge transfor-
mation represented by ¢. This interpretation makes sense if the fluxes defined by Q' and
corresponding Hamiltonians affect only zero modes rather than quantum fluctuating degrees
of freedom.

8. Later a simpler proposal assuming Kéahler action with Chern-Simons term at partonic orbits
and Ké&hler-Dirac action with Chern-Simons Dirac term at partonic orbits emerged. Mea-
surement interaction terms would correspond to Lagrange multiplier terms at the ends of
space-time surface fixing the values of classical conserved charges to their quantum values.
Super-symmetry requires the assignment of this kind of term also to modified Dirac action
as boundary term.

Kahler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kahler-Dirac gamma matrix in normal direction
annihilates the spinor modes. The normal vector would be light-like and the value of the
incoming on mass shell four-momentum would be coded to the geometry of the space-time
surface and string world sheet.

One can assign to partonic orbits Chern-Simons Dirac action and now the condition would
be that the action of C-S-D operator equals to that of massless M* Dirac operator. C-S-D
Dirac action would give rise to massless Dirac propagator. Twistor Grassmann approach
suggests that also the virtual fermions reduce effectively to massless on-shell states but have
non-physical helicity.

2.6.4 About the notion of measurement interaction

The notion of measurement has been central notion in quantum TGD but the precise definition of
this notion is far from clear. In the following two possibly equivalent formulations are considered.
The first formulation relies on the gauge transformations leaving Coulomb term of K&hler action
unchanged and the second one to the interpretation of TGD as a square root of thermodynamics
allowing to fix the values of conserved classical charges for zero energy energy state using Lagrange
multipliers analogous to chemical potentials.

1. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A — A+ V¢ for which the scalar function the integral [ j%d,¢ reduces to a total divergence
a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents
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Do(j%¢) = 0 . (2.6.15)

As a consequence Coulomb term reduces to a difference of the conserved charges @, =
Ik joqﬁ\/gjd?’x at the ends of the CD vanishing identically. The change of the Chern-Simons
type term is trivial if the total weighted Kahler magnetic flux QF' = >~ | Jpd A over wormhole
throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.

2. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the modified Dirac
interaction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kahler gauge potential of CP,. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
charges would provide a representation for the charges associated with the infinitesimal crit-
ical deformations not affecting Kéhler action.

The gauge transformed Kahler potential couples to the modified Dirac equation and its effect
could be visible in the value of Kéahler function and therefore also in the properties of the pre-
ferred extremal. The effect on WCW metric would however vanish since K would transform
only by an addition of a real part of a holomorphic function. Kéhler function is identified as
a Dirac determinant of Chern-Simons Dirac operator (after many turns and twists) and the
spectrum of this operator should not be invariant under these gauge transformations if this
picture is correct. This is is achieved if the gauge transformation is carried only in the Dirac
action corresponding to instanton term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kéahler action
can be guessed to correspond just to the Chern-Simons contribution from the instanton term.

3. A reasonable looking guess for the explicit realization of the quantum classical correspon-
dence between quantum numbers and space-time geometry is that the deformation of the
preferred extremal due to the addition of the measurement interaction term is induced by a
U(1) gauge transformation induced by a transformation of 6C'D x C' P, generating the gauge
transformation represented by ¢. This interpretation makes sense if the fluxes defined by

m

¢ and corresponding Hamiltonians affect only zero modes rather than quantum fluctuating
degrees of freedom.

In zero energy ontology (ZEO) TGD can be seen as square root of thermodynamics and this
suggests an alternative manner to define what measurement interaction term means.

1. The condition that the space-time sheets appearing in superposition of space-time surfaces
with given quantum numbers in Cartan algebra have same classical quantum numbers as-
sociated with Kahler action can be realized in terms of Lagrange multipliers in standard
manner. These kind of terms would be analogous to various chemical potential terms in
the partition function. One could call them measurement interaction terms. Measurement
interaction terms would code the values of quantum charges to the space-time geometry.

Kahler action contains also Chern-Simons term at partonic orbits compensating the Chern-
Simons terms coming from Kahler action when weak form of electric-magnetic duality is as-
sumed. This guarantees that Kahler action for preferred extremals reduces to Chern-Simons

terms at the space-like ends of the spacetime surface and one obtains almost topological
QFT.

2. If Kahler-Dirac action is constructed from Kahler action in super-symmetric manner by
defining the modified gamma matrices in terms of canonical momentum densities one obtains
also the fermionic counterparts of the Lagrange multiplier terms at partonic orbits and could
call also them measurement interaction terms. Besides this one has also the Chern-Simons
Dirac terms associated with the partonic orbits giving ordinary massless Dirac propagator.
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In presence of measurement interaction terms at the space-like ends of the space-time surface
the boundary conditions I'""¥ = 0 at the ends would be modified by the addition of term
coming from the modified gamma matrix associated with the Lagrange multiplier terms. The
original generalized massless generalized eigenvalue spectrum p*~; of I'™ would be modified
to massive spectrum given by the condition

(I + > A3, Da)¥ =0 ,
i

where @; refers to i:th conserved charge.

An interesting question is whether these two manners to introduce measurement interaction
terms are actually equivalent.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kéhler functions and to the
terms from light-like wormhole throats giving interaction term between positive and negative en-
ergy parts of the state. Hence Kéahler function could be calculated without any knowledge about
the interior of the space-time sheets and TGD would reduce to almost topological QFT as specu-
lated earlier. Needless to say this would have immense boost to the program of constructing WCW
Kahler geometry.

2.6.5 Kahler action for Euclidian regions as Kahler function and Kahler
action for Minkowskian regions as Morse function?

One of the nasty questions about the interpretation of Kéhler action relates to the square root of
the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is
that the square root is imaginary in Minkowskian space-time regions so that Kahler action would
be complex. The Euclidian contribution would have a natural interpretation as positive definite
Kahler function but how should one interpret the imaginary Minkowskian contribution? Certainly
the path integral approach to quantum field theories supports its presence. For some mysterious
reason I was able to forget this nasty question and serious consideration of the obvious answer to
it. Only when I worked between possibile connections between TGD and Floer homology [K89]
I realized that the Minkowskian contribution is an excellent candidate for Morse function whose
critical points give information about WCW homology. This would fit nicely with the vision about
TGD as almost topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would
have a mathematically well-defined theory. Minkowskian contribution would give the quantal
interference effects and stationary phase approximation. The analog of Floer homology would
represent quantum superpositions of critical points identifiable as ground states defined by the
extrema of Kahler action for Minkowskian regions. Perturbative approach to quantum TGD would
rely on functional integrals around the extrema of Kéhler function. One would have maxima also
for the Kéahler function but only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should
one assume that the reduction to Chern-Simons terms occurs for the preferred extremals in both
Minkowskian and Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [K31] involve local
light-like momentum direction which does not make sense in the Euclidian regions. This does
not however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of C'P; bounded by wormhole throats: for C' P, itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-
one correspondences with the solutions of the modified Dirac equation. The interpretation for
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the counterparts of momentum and polarization would be in terms of classical representation
of color quantum numbers.

2. If the reduction occurs in Euclidian regions, it gives in the case of C P, two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for C' P, so that one would have two Chern-Simons terms. I have ear-
lier claimed that without any other contributions the first term would be identical with that
from Minkowskian region apart from imaginary unit and different coefficient. This statement
is wrong since the space-like parts of the corresponding 3-surfaces are discjoint for Euclidian
and Minkowskian regions.

3. There is also an argument stating that Dirac determinant for Chern-Simons Dirac action
equals to Kahler function, which would be lost if Euclidian regions would not obey holography.
The argument obviously generalizes and applies to both Morse and Kéhler function which
are definitely not proportional to each other.

CP breaking and ground state degeneracy

The Minkowskian contribution of K&ahler action is imaginary due to the negativity of the met-
ric determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms
at wormhole throats. Ground state degeneracy due to the possibility of having both signs for
Minkowskian contribution to the exponent of vacuum functional provides a general view about the
description of CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV.
The vacuum functional and its conjugate are associated with the states in the inner product
so that the phases of vacuum functionals cancel if only one sign for the phase is allowed.
Minkowskian contribution would have no physical significance. This of course cannot be
the case. The ground state is actually degenerate corresponding to the phase factor and
its complex conjugate since /g can have two signs in Minkowskian regions. Therefore the
inner products between states associated with the two ground states define 2 x 2 matrix and
non-diagonal elements contain interference terms due to the presence of the phase factor. At
the limit of full C'Py type vacuum extremal the two ground states would reduce to each other
and the determinant of the matrix would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K — K and of CKM matrix should reduce to
this mixing. K° mesons would be CP even and odd states in the first approximation and
correspond to the sum and difference of the ground states. Small mixing would be present
having exponential sensitivity to the actions of C'P, type extremals representing wormhole
throats. This might allow to understand qualitatively why the mixing is about 50 times
larger than expected for BY mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation
at either upper or lower boundary of CD. Do long- and shortlived neutral K mesons corre-
spond to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or
almost completely to a fixed arrow of time induced by environment? Is the dominant part of
the arrow same for both or is it opposite for long and short-lived neutral measons? Different
lifetimes would suggest that the arrow must be the same and apart from small leakage that
induced by environment. CP breaking would be induced by the fact that CP is performed
only K° but not for the environment in the construction of states. One can probably imagine
also alternative interpretations.

2.6.6 A general solution ansatz based on almost topological QFT prop-
erty

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological QFT.
This requires that the flow parameters associated with the flow lines of isometry currents and
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Kahler current extend to global coordinates. This leads to integrability conditions implying gener-
alized Beltrami flow and Kéahler action for the preferred extremals reduces to Chern-Simons action
when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kahler current.
In the more general case one would have several hydrodynamic flows. Also the braidings (several
of them for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined
by the flow lines of conserved currents. The independent behavior of particles at different flow
lines can be seen as a realization of the complete integrability of the theory. In free quantum field
theories on mass shell Fourier components are in a similar role but the geometric interpretation
in terms of flow is of course lacking. This picture should generalize also to the solution of the
modified Dirac equation.

Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and
leads to the isometry group T'x SO(3) x SU(3) corresponding to time translations, rotations,
and color group. The Cartan algebra is four-dimensional and field equations reduce to the
conservation laws of energy E, angular momentum J, color isospin I3, and color hypercharge
Y.

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y.

Dy [Dg(J*PHy) — joeHY + T j4 hiydsh!] = 0 . (2.6.16)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kéhler
form and vanishes so that one has

Do [jxH" = T*Pjahndsh'] = 0 . (2.6.17)

For energy one has H4 = 1 and energy current associated with the flow lines is proportional
to the Kahler current. Its divergence vanishes identically.

3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving j% J,3 and contraction of second fundamental form with energy momentum
tensor so that one obtains

JeDoHY = jed,Pif + TP HE 5 (2.6.18)

Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydro-
dynamics analogous to that for a continuous distribution of particles initially at the end of X3 of
the light-like 3-surface moving along flow lines defined by currents j4 satisfying the integrability
condition j4 Adja = 0. Field theory would reduce effectively to particle mechanics along flow lines
with conserved charges defined by various isometry currents. The strongest condition is that all
isometry currents j4 and also Kahler current jx are proportional to the same current j. The more
general option corresponds to multi-hydrodynamics.

Conserved currents are analogous to hydrodynamical currents in the sense that the flow pa-
rameter along flow lines extends to a global space-time coordinate. The conserved current is
proportional to the gradient V® of the coordinate varying along the flow lines: J = YV ® and by
a proper choice of ¥ one can allow to have conservation. The initial values of ¥ and ® can be
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selected freely along the flow lines beginning from either the end of the space-time surface or from
wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is re-
quired for preferred extremals), the initial values of scalar functions can be chosen freely only at
the partonic 2-surfaces. The freedom to chose the initial values of the charges conserved along
flow lines at the partonic 2-surfaces means the existence of an infinite number of conserved charges
so that the theory would be integrable and even in two different coordinate directions. The basic
difference as compared to ordinary conservation laws is that the conserved currents are parallel
and their flow parameter extends to a global coordinate.

1. The most general assumption is that the conserved isometry currents

IS = RH =T jlhu0sh! (2.6.19)

and Kahler current are integrable in the sense that J4 A J4 =0 and jx A jx = 0 hold true.
One could imagine the possibility that the currents are not parallel.

2. The integrability condition dJ4 A J4 = 0 is satisfied if one one has

Ja = Uadd, . (2.6.20)

The conservation of J4 gives

dx (Uaddy) = 0 . (2.6.21)

This would mean separate hydrodynamics for each of the currents involved. In principle
there is not need to assume any further conditions and one can imagine infinite basis of
scalar function pairs (¥ 4, ® 4) since criticality implies infinite number deformations implying
conserved Noether currents.

3. The conservation condition reduces to d’Alembert equation in the induced metric if one
assumes that VWU 4 is orthogonal with every d® 4.

d*d‘IDA = O, d\I’A-d(I)AZO. (2.6.22)

Taking 2 = ®4 as a coordinate the orthogonality condition states g*J 0j¥4 = 0 and in
the general case one cannot solve the condition by simply assuming that ¥, depends on
the coordinates transversal to ® 4 only. These conditions bring in mind p-p =0 and p-e
condition for massless modes of Maxwell field having fixed momentum and polarization. d® 4
would correspond to p and d¥4 to polarization. The condition that each isometry current
corresponds its own pair (¥4, ®,4) would mean that each isometry current corresponds to
independent light-like momentum and polarization. Ordinary free quantum field theory
would support this view whereas hydrodynamics and QFT limit of TGD would support
single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.
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1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isom-
etry charges flow along same flow lines so that one would have

Ja = Uudd . (2.6.23)

In this case same ® would satisfy simultaneously the d’Alembert type equations.

dvd® = 0, dV,-dd =0. (2.6.24)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light
like 3-surfaces carry parallel four-momenta, which suggest that this option is correct. This
allows a very general family of solutions and one can have a complete 3-dimensional basis of
functions ¥4 with gradient orthogonal to d®.

2. Isometry invariance under T' x SO(3) x SU(3) allows to consider the possibility that one has

Ja = kA\I’Ad(I)G(A) , dx(dPg(A) =0, d¥4-dPs(4))=0 . (2.6.25)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for
color currents. Energy would thus flow along its own flux lines, angular momentum along its
own flow lines, and color quantum numbers along their own flow lines. For instance, color
currents would differ from each other only by a numerical constant. The replacement of W 4
with Wg(4) would be too strong a condition since Killing vector fields are not related by a
constant factor.

To sum up, the most general option is that each conserved current J4 defines its own integrable
flow lines defined by the scalar function pair (U4,®4). A complete basis of scalar functions
satisfying the d’Alembert type equation guaranteeing current conservation could be imagined with
restrictions coming from the effective 2-dimensionality reducing the scalar function basis effectively
to the partonic 2-surface. The diametrically opposite option corresponds to the basis obtained by
assuming that only single ® is involved.

The proposed solution ansatz can be compared to the earlier ansatz [K40] stating that Kahler
current is topologized in the sense that for D(CP,) = 3 it is proportional to the identically
conserved instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP,) = 4
(Maxwell phase). This hypothesis requires that instanton current is Beltrami field for D(C'P,) = 3.
In the recent case the assumption that also instanton current satisfies the Beltrami hypothesis in
strong sense (single function ®) generalizes the topologization hypothesis for D(CP;) = 3. As
a matter fact, the topologization hypothesis applies to isometry currents also for D(CP;) = 4
although instanton current is not conserved anymore.

Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-
Simons action. The strongest condition would be that space-time surfaces allow orthogonal slicings
by 3-surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kahler magnetic field B = *.J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.
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For wormhole throats light-likeness causes some complications since the induced metric is degen-
erate and the contravariant metric must be restricted to the complement of the light-like direction.
This means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like
3-surfaces one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as
sources. The interpretation in terms of analogs of Coulomb potentials created by 2-D charge
distributions would be natural.

2.6.7 Hydrodynamic picture in fermionic sector

Super-symmetry inspires the conjecture that the hydrodynamical picture applies also to the solu-
tions of the modified Dirac equation. This would mean that the solutions of Dirac equation can
be localized to lower-dimensional surface or even flow lines.

Basic objection

The obvious objection against the localization to sub-manifolds is that it is not consistent with
uncertainty principle in transversal degrees of freedom. More concretely, the assumption that the
mode is localized to a lower-dimensional surface of X% implies that the action of the transversal
part of Dirac operator in question acts on delta function and gives something singular.

The situation changes if the Dirac operator in question has vanishing transversal part at the
lower-dimensional surface. This is not possible for the Dirac operator defined by the induced metric
but is quite possible in the case of Kéhler-Dirac operator. For instance, in the case of massless
extremals Kéahler-Dirac gamma matrices are non-vanishing in single direction only and the solution
modes could be one-dimensional. For more general preferred extremals such as cosmic strings this
is not the case.

In fact, there is a strong physical argument in favor of the localization of spinor modes at 2-D
string world sheets so that hydrodynamical picture would result but with flow lines replaced with
fermionic string world sheets.

1. Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is
very natural constraint and not trivially satisfied because classical W boson fields are present.
As a matter fact, all weak fields should be effectively absent above weak scale. How this is
possible classical weak fields identified as induced gauge fields are certainly present.

2. The condition that em charge is well defined for spinor modes implies that the space-time
region in which spinor mode is non-vanishing has 2-D C'P, projection such that the induced
W boson fields are vanishing. The vanishing of classical Z° field can be poses as additional
condition - at least in scales above weak scale. In the generic case this requires that the spinor
mode is restricted to 2-D surface: string world sheet or possibly also partonic 2-surface.
This implies that TGD reduces to string model in fermionic sector. Even for preferred
extremals with 2-D projecting the modes are expected to allow restriction to 2-surfaces.
This localization is possible only for Kahler-Dirac action and requires that the part of the
Kahler-Dirac operator transversal to 2-surface vanishes.

3. This localization does not hold for cosmic string solutions which however have 2-D CP,
projection which should have vanishing weak fields so that 4-D spinor modes with well-
defined em charge are possible.

4. A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced met-
rics of space-time sheets from Minkowski metric. For gauge potentials a similar identification
applies. YM-Einstein equations coupled with matter and with non-vanishing cosmological
constant are expected on basis of Poincare invariance. One cannot exclude the possibility
that the sums of weak gauge potentials from different space-time sheet tend to vanish above
weak scale and that well-definedness of em charge at classical level follows from the effective
absence of classical weak gauge fields.
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4-dimensional modified Dirac equation and hydrodynamical picture

In following consideration is restricted to preferred extremals for which one has decomposition to
regions characterized by local light-like vector and polarization direction. In this case one has good
hopes that the modes can be restricted to 1-D light-like geodesics.

Consider first the solutions of of the induced spinor field in the interior of space-time surface.

1. The local inner products of the modes of the induced spinor fields define conserved currents

D,Jy, = 0,
JE = Tpml®u,
. OL

The conjecture is that the flow parameters of also these currents extend to a global coordinate
so that one would have in the completely general case the condition

J’rcrzm = 0, dVpn
A (dPpn) = 0, VW Ppn =0 . (2.6.27)

The condition ®,,,, = ® would mean that the massless modes propagate in parallel manner
and along the flow lines of Kéahler current. The conservation condition along the flow line
implies tht the current component J,,, is constant along it. Everything would reduce to
initial values at the ends of the space-time sheet boundaries of CD and 3-D modified Dirac
equation would reduce everything to initial values at partonic 2-surfaces.

2. One might hope that the conservation of these super currents for all modes is equivalent with
the modified Dirac equation. The modes u,, appearing in ¥ in quantized theory would be
kind of ”square roots” of the basis ®,,, and the challenge would be to deduce the modes
from the conservation laws.

3. The quantization of the induced spinor field in 4-D sense would be fixed by those at 3-D
space-like ends by the fact that the oscillator operators are carried along the flow lines as
such so that the anti-commutator of the induced spinor field at the opposite ends of the flow
lines at the light-like boundaries of CD is in principle fixed by the anti-commutations at the
either end. The anti-commutations at 3-D surfaces cannot be fixed freely since one has 3-D
Chern-Simons flow reducing the anti-commutations to those at partonic 2-surfaces.

The following argument suggests that induced spinor fields are in a suitable gauge simply
constant along the flow lines of the K&ahler current just as massless spinor modes are constant
along the geodesic in the direction of momentum.

1. The modified gamma matrices are of form ToT*, T = 0Lk /0(0,h*). The H-vectors TS can
be expressed as linear combinations of a subset of Killing vector fields j ﬁ spanning the tangent
space of H. For C'P, the natural choice are the 4 Lie-algebra generators in the complement
of U(2) sub-algebra. For CD one can used generator time translation and three generators of
rotation group SO(3). The completeness of the basis defined by the subset of Killing vector
fields gives completeness relation hf = j4%j4r. This implies T* = Takj,‘;‘jff‘ = TO‘Ajff‘. One
can defined gamma matrices I'4 as I‘kj’jx to get T,g‘l“]c = TAT 4.

2. This together with the condition that all isometry currents are proportional to the Kéahler
current (or if this vanishes to same conserved current- say energy current) satisfying Bel-
trami flow property implies that one can reduce the modified Dirac equation to an ordinary
differential equation along flow lines. The quantities T*4 are constant along the flow lines
and one obtains
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TAj.DY = 0 . (2.6.28)

By choosing the gauge suitably the spinors are just constant along flow lines so that the spinor
basis reduces by effective 2-dimensionality to a complete spinor basis at partonic 2-surfaces.

2.6.8 Possible role of Beltrami flows and symplectic invariance in the
description of gauge and gravitational interactions

One of the most recent observations made by people working with twistors is the finding of Monteiro
and O’Connell described in the preprint The Kinematic Algebra From the Self-Dual Sector [B59].
The claim is that one can obtain supergravity amplitudes by replacing the color factors with
kinematic factors which obey formally 2-D symplectic algebra defined by the plane defined by
light-like momentum direction and complexified variable in the plane defined by polarizations.
One could say that momentum and polarization dependent kinematic factors are in exactly the
same role as the factors coming from Yang-Mills couplings. Unfortunately, the symplectic algebra
looks rather formal object since the first coordinate is light-like coordinate and second coordinate
complex transverse coordinate. It could make sense only in the complexification of Minkowski
space.

In any case, this would suggest that the gravitational gauge group (to be distinguished from
diffeomorphisms) is symplectic group of some kind having enormous representative power as we
know from the fact that the symmetries of practically any physical system are realized in terms
of symplectic transformations. According to the authors of [B59] one can identify the Lie algebra
of symplectic group of sphere with that of SU(N) at large N limit in suitable basis. What makes
this interesting is that at large N limit non-planar diagrams which are the problem of twistor
Grassmann approach vanish: this is old result of t’Hooft, which initiated the developments leading
to AdS/CFT correspondence.

The symplectic group of §M1{ x CPy is the isometry algebra of WCW and I have proposed
that the effective replacement of gauge group with this group implies the vanishing of non-planar
diagrams [K88]. The extension of SYM to a theory of also gravitation in TGD framework could
make Yangian symmetry exact, resolve the infrared divergences, and the problems caused by non-
planar diagrams. It would also imply stringy picture in finite measurement resolution. Also the
the construction of the non-commutative homology and cohomology in TGD framework led to the
lifting of Galois group algebras to their braided variants realized as symplectic flows [K89] and
to the conjecture that in finite measurement resolution the cohomology obtained in this manner
represents WCW ("world of classical worlds”) spinor fields (or at least something very essential
about them).

It is however difficult to understand how one could generalize the symplectic structure so
that also symplectic transformations involving light-like coordinate and complex coordinate of
the partonic 2-surface would make sense in some sense. In fact, a more natural interpretation
for the kinematic algebra would in terms of volume preserving flows which are also Beltrami
flows [B54, B57]. This gives a connection with quantum TGD since Beltrami flows define a basic
dynamical symmetry for the preferred extremals of Kéhler action which might be called Maxwellian
phase.

1. Classical TGD is defined by Kahler action which is the analog of Maxwell action with Maxwell
field expressed as the projection of C' P, Kéhler form. The field equations are extremely non-
linear and only the second topological half of Maxwell equations is satisfied. The remaining
equations state conservation laws for various isometry currents. Actually much more general
conservation laws are obtained.

2. As a special case one obtains solutions analogous to those for Maxwell equations but there
are also other objects such as C' P, type vacuum extremals providing correlates for elementary
particles and string like objects: for these solutions it does not make sense to speak about
QFT in Minkowski space-time. For the Maxwell like solutions linear superposition is lost
but a superposition holds true for solutions with the same local direction of polarization
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and massless four-momentum. This is a very quantal outcome (in accordance with quantum
classical correspondence) since also in quantum measurement one obtains final state with
fixed polarization and momentum. So called massless extremals (topological light rays)
analogous to wave guides containing laser beam and its phase conjugate are solutions of
this kind. The solutions are very interesting since no dispersion occurs so that wave packet
preserves its form and the radiation is precisely targeted.

3. Maxwellian preferred extremals decompose in Minkowskian space-time regions to regions that
can be regarded as classical space-time correlates for massless particles. Massless particles
are characterized by polarization direction and light-like momentum direction. Now these
directions can depend on position and are characterized by gradients of two scalar functions
® and ¥. @ defines light-like momentum direction and the square of the gradient of ® in
Minkowski metric must vanish. ¥ defines polarization direction and its gradient is orthogonal
to the gradient of ® since polarization is orthogonal to momentum.

4. The flow has the additional property that the coordinate associated with the flow lines
integrates to a global coordinate. Beltrami flow is the term used by mathematicians. Beltrami
property means that the condition j Adj =0 is satisfied. In other words, tjhe current is in the
plane defined by its exterior derivative. The above representation obviously guarantees this.
Beltrami property allows to assign order parameter to the flow depending only the parameter
varying along flow line.

This is essential for the hydrodynamical interpretation of the preferred extremals which relies
on the idea that varies conservation laws hold along flow lines. For instance, super-conducting
phase requires this kind of flow and velocity along flow line is gradient of the order parameter.
The breakdown of super-conductivity would mean topologically the loss of the Beltrami flow
property. One might say that the space-time sheets in TGD Universe represent analogs of
supra flow and this property is spoiled only by the finite size of the sheets. This strongly
suggests that the space-time sheets correspond to perfect fluid flows with very low viscosity
to entropy ratio and one application is to the observed perfect flow behavior of quark gluon
plasma.

5. The current J = ®V V¥ has vanishing divergence if besides the orthogonality of the gradients
the functions ¥ and & satisfy massless d’Alembert equation. This is natural for massless
field modes and when these functions represent constant wave vector and polarization also
d’Alembert equations are satisfied. One can actually add to V¥ a gradient of an arbitrary
function of ® this corresponds to U(1) gauge invariance and the addition to the polarization
vector a vector parallel to light-like four-momentum. One can replace ® by any function of ¢
so that one has Abelian Lie algebra analogous to U(1) gauge algebra restricted to functions
depending on ® only.

The general Beltrami flow gives as a special case the kinetic flow associated by Monteiro and
O’Connell with plane waves. For ordinary plane wave with constant direction of momentum vector
and polarization vector one could take ® = cos(¢), ¢ = k-m and ¥ = e¢-m. This would give a real
flow. The kinematical factor in SYM diagrams corresponds to a complexified flow ® = exp(i¢) and
¥ = ¢+w, where w is complex coordinate for polarization plane or more naturally, complexificaton
of the coordinate in polarization direction. The flow is not unique since gauge invariance allows
to modify ¢ term. The complexified flow is volume preserving only in the formal algebraic sense
and satisfies the analog of Beltrami condition only in Dolbeault cohomology where d is identified
as complex exterior derivative (df = df /dz dz for holomorphic functions). In ordinary cohomology
it fails. This formal complex flow of course does not define a real diffeomorphism at space-time
level: one should replace Minkowski space with its complexification to get a genuine flow.

The finding of Monteiro and O’Connel encourages to think that the proposed more general
Abelian algebra pops up also in non-Abelian YM theories. Discretization by braids would actually
select single polarization and momentum direction. If the volume preserving Beltrami flows char-
acterize the basic building bricks of radiation solutions of both general relativity and YM theories,
it would not be surprising if the kinematic Lie algebra generators would appear in the vertices of
YM theory and replace color factors in the transition from YM theory to general relativity. In
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TGD framework the construction of vertices at partonic two-surfaces would define local kinematic
factors as effectively constant ones.

2.7 An attempt to understand preferred extremals of Kahler
action

Preferred extremal of Kéhler action is one of the basic poorly defined notions of TGD. There are
pressing motivations for understanding what ”preferred” really means. For instance, the conformal
invariance of string models naturally generalizes to 4-D invariance defined by quantum Yangian
of quantum affine algebra (Kac-Moody type algebra) characterized by two complex coordinates
and therefore explaining naturally the effective 2-dimensionality [K88]. The problem is however
how to assign a complex coordinate with the string world sheet having Minkowskian signature
of metric. One can hope that the understanding of preferred extremals could allow to identify
two preferred complex coordinates whose existence is also suggested by number theoretical vision
giving preferred role for the rational points of partonic 2-surfaces in preferred coordinates. The
best one could hope is a general solution of field equations in accordance with the hints that TGD
is integrable quantum theory.

2.7.1 What ”preferred” could mean?

The first question is what preferred extremal could mean.

1. In positive energy ontology preferred extremal would be a space-time surface assignable to
given 3-surface and unique in the ideal situation: since one cannot pose conditions to the
normal derivatives of imbedding space coordinates at 3-surface, there is infinity of extremals.
Some additional conditions are required and space-time surface would be analogous to Bohr
orbit : hence the attribute ”preferred”. The problem would be to understand what ”pre-
ferred” could mean. The non-determinism of Kéhler action however destroyed this dream in
its original form and led to zero energy ontology (ZEO).

2. In ZEO one considers extremals as space-time surfaces connecting two space-like 3-surfaces
at the boundaries. One might hope that these 4-surfaces are unique. The non-determinism
of Kéhler action suggests that this is not the case. At least there is conformal invariance
respecting the light-likeness of the 3-D parton orbits at which the signature of the induced
metric changes: the conformal transformations would leave the space-like 3-D ends or at least
partonic 2-surfaces invariant. This non-determinism wo