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Abstract 

To accommodate topology change, the symmetry of space-time must 

be extended from the diffeomorphism group of a manifold, to the 

symmetric group acting on the discrete set of space-time events. This 

is the principle of event-symmetric space-time. I investigate a number 

of physical toy models with this symmetry to gain some insight into the 

likely nature of event-symmetric space-time. In the more advanced 

models the symmetric group is embedded into larger structures such as 

matrix groups which provide scope to unify space-time symmetry with 

the internal gauge symmetries of particle physics. I also suggest that 

the symmetric group of space-time could be related to the symmetric 

group acting to exchange identical particles, implying a unification of 

space-time and matter. I end with a definition of a new type of loop 

symmetry which is important in event-symmetric superstring theory. 
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Introduction 

One of the greatest challenges facing theoretical physics is to understand the structure of space-time at the 

Planck scale. At such small distances quantum theory and general relativity combine and space-time is 

replaced by some unknown pregeometry. In the 1960’s and 1970’s some basic ideas about the small scale 

structure of space-time were set by Finkelstein, Penrose and Wheeler but otherwise, very little progress was 

made. In the last decade there have been a growing number of speculative pregeometry models studied. At the 

same time developments in quantum gravity such as string theory and canonical quantum gravity have thrown 

much light on the microscopic nature of space-time. A bibliography of references on the small scale structure 

on space-time can be found in my review (Gibbs 1995c). 

One clear message from theories of quantum gravity is that there is a physical minimum distance beyond 

which the Heisenberg uncertainty principle inhibits measurement (Garay 1994). There are also suggestions 

resulting from studies of the thermodynamics of black holes that the number of physical degrees of freedom in 

a volume of space must have a strict finite limit (Bekenstein 1994). These observations lend credibility to 

models of discrete space-time but it is important not to forget the importance of topology. A good pregeometry 

model may have a dual nature with properties of both discrete and continuous space-time.  

The theory of event-symmetric space-time is a discrete approach to quantum gravity in which the exact nature 

of space-time will only become apparent in the solution. Even the number of space-time dimensions is not set 

by the formulation and must be a dynamic result. In relation to other pregeometry theories, event-symmetric 

space-time is closest in spirit to Quantum Relativity (Finkelstein, Gibbs 1993) and discrete differential 

manifolds (Dimakis et al 1994) 

Principles of symmetry are of primary importance in both general relativity and quantum mechanics and might 

be expected to be of at least as much importance in a combined theory of quantum gravity. However, very few 

pregeometry models use symmetry in a useful way. Wheeler suggests that symmetry conceals the pregeometric 

structure and should not be given any importance (Wheeler 1994). My own belief is that the symmetry so far 

discovered in nature is just the tip of a very large iceberg. In the event-symmetric approach to pregeometry I 

take symmetry to be an overriding principle no matter how bizarre the conclusions. Specifically, I argue that 

space-time symmetry must be enlarged to include invariance under the symmetric group acting on space-time 

as a discrete set of events. By enlarging the symmetry still further it may be possible to unify space-time 

symmetry with internal gauge symmetry. 

At the present time the best candidate to unify all known forces is superstring theory. The aspects of 

superstring which are least well understood are its symmetry and geometric foundation. Event-symmetric 

space-time may be the solution to solving these problems and already there are some interesting models of 

event-symmetric string theory which will be described in this paper.  

Before I go into the details of the theory it may be interesting to recall some of the different philosophical ideas 

about space-time which have been disputed in past history. As observers we perceive events in our physical 

environment through our senses. In our minds we possess a model of space and time in which we place these 

events. Before the 20th century a number of philosophers, notably Mach, suggested that since we do not 

perceive space and time directly they should not be regarded as existing absolutely in their own right but only 

as a result of relations between material objects.  On this basis Mach stated his principle that inertia is 

determined by all the mass of the universe and is therefore relative to the distant stars. This is a physically 

testable prediction which is known to be highly accurate. 

Many mathematicians, however, took the opposite viewpoint. Space is studied as a geometric object existing 

independently of matter. Riemann went further suggesting that matter itself could be just a manifestation of 

local curvature of space.  

Einstein was impressed with Mach’s philosophy and hoped that Mach’s principle would follow as a 

consequence of general relativity. Paradoxically he found that Riemann’s mathematics of curved geometry was 

just what he needed to formulate the theory. He showed that the gravitational force was a result of 

geometrodynamics. The beauty of the result was so persuasive that physicists turned away from the earlier 

philosophy of Mach towards theories in which matter and the other forces might be understood as a 

consequence of geometry. Kaluza-Klein theories are the best known of this type but there are also theories in 

which particles are thought of as purely geometrical objects such as microscopic black holes or wormholes. 
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In the light of this it is interesting to look forward to what the event-symmetric physics is going to tell us about 

the relationship between matter and space-time. The principle is a direct extension of covariance in general 

relativity with invariance under diffeomorphisms being extended to invariance under any one-to-one mapping. 

In some of the event-symmetric models I will propose, it is natural to identify the symmetric group acting on 

space-time with the symmetry under exchange of identical particles. This strongly suggests a return to a 

Machian point of view in which space-time is seen as a consequence of relationships between matter. 

Development of the theory of event-symmetric space-time has been my interest for the last five years and has 

previously been reported in e-prints available on the internet (Gibbs 1994a; 1995b). In this paper I include and 

extend the results of those papers. 

Event-Symmetric Space-Time 

General relativity is based on the principle that physics is invariant under any differentiable change of space-

time co-ordinates. To be more precise general relativity is defined on a manifold M and is invariant under the 

group of diffeomorphisms on the manifold diff(M). Symmetry principles of this type have become the 

cornerstone of theoretical physics this century. The recipe for using symmetry in theory cooking goes 

something like this: 

1. Choose a group which you think corresponds to a symmetry of physics. 

2. Choose a representation of the group which could correspond to the physical variables. 

3. Choose an invariant function of the representation to define the action principle for your theory. 

When symmetry is combined with other requirements such as locality and renormalisabilty in quantum field 

theory the constraints on choice are so high that it becomes possible to construct theories with a minimum of 

empirical input. The idea is so compelling that we might believe the laws of physics are based on some 

fundamental symmetry principle defined by some universal symmetry group GU . All known symmetries of 

physics would be derived from the universal group as residual symmetry left over after spontaneous symmetry 

breaking. If only we knew what GU  was we would be just a couple of steps away from knowing the laws of 

physics. 

Let us suppose for the moment that this is really true. What could we say about the group GU ? It must contain 

a subgroup isomorphic to the symmetry of general relativity. 

diff M GU( )   

And another isomorphic to the gauge group, 

G GM

U  

This immediately raises a question: Is the topology of the manifold M determined by the universal group? The 

diffeomorphism group on two different manifolds are not isomorphic if they have different topologies. For 

aesthetic reasons we might prefer that the topology of the space-time manifold is not written into the laws of 

physics since it would fix the global properties of the universe. There are also arguments from microscopic 

physics for the same conclusion. It was Wheeler who first pointed out that in a model of quantum 

geometrodynamics the fluctuations of space-time at the Planck scale would be so great that space-time would 

be reduced to a foam of virtual wormholes (Wheeler 1957). The topology of space must be continually 

changing and quantum gravity must include a sum over all possible space-time topologies. The arguments in 

favour of topology change have only become stronger with time (Balachandran et al. 1995). 

This forces us to conclude that the universal group must contain the diffeomorphism groups for an infinite 

number of topologically different manifolds. The puzzle that this presents was discussed by Witten when trying 

to reason what would be the universal group of string theory (Witten 1993). We must find a group that 

contains all the allowed diffeomorphism groups. One possibility might be to simply take the direct product of 

all the groups but this would define a universe made up of many independent manifolds which is not what we 

would want. 

Witten’s puzzle seems to epitomise the incompatibility between General Relativity and Quantum Mechanics. 

There may be many ways of resolving it, including the possibility of giving up the fundamental role of 

symmetry or discarding topology change. In this paper we explore another simple but radical solution. The 

diffeomorphism group on a manifold is a subgroup of all one-to-one mappings on the manifold, otherwise 
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known as the symmetric group on the set of events in the manifold. The symmetric group is independent of the 

topological structure of the manifold and is therefore isomorphic to the symmetric group on any other manifold 

or any other set which has the same cardinality 

diff M S M S( ) ( ) ( )  1  

It follows that the diffeomorphism group for any manifold whatsoever is isomorphic to a sub-group of the 

symmetric group and, therefore, if the universal group contains the symmetric group acting on space-time 

events then topology change is possible. This simple observation leads to the following definition: 

A model of space-time is said to be event-symmetric if it is invariant under the symmetric group acting on 

space-time events, or a larger group which has a homomorphism onto the symmetric group. 

S E G KU( )   

To satisfy this definition it is not necessary to have an uncountable number of space-time events. A model with 

the symmetric group S(0) would be event-symmetric. It is convenient to regularise the number of space-time 

events to a finite number N and take the large N limit while scaling some of the parameters of the model as 

functions of N. This approach is valid since a manifold with an uncountable number of events can be densely 

covered with a countable number of events.  

An important example of a group with a homomorphism onto the symmetric group is the braided group B(N). 

The universal symmetry GU  is likely to be a larger structure such as a matrix group like U(N) which contains 

the symmetric group S(N) represented by permutation matrices. Corresponding symmetry structures for the 

braid group would be the quantum matrix groups. As we shall see, the principle of event-symmetric space-time 

becomes more and more interesting as we seek to extend the symmetric group to the most general symmetry 

possible. 

Simple Models 

In event-symmetric space-time there is no continuous time parameter. This should be an advantage in physical 

situations where time might break down, i.e. at singularities. On the other hand it makes it unclear how to 

define quantum models. The simplest way to proceed is to start from a path integral approach and generalise. 

The construction of the most general quantum system needed for our purposes is as follows: 

 Define a system of field variables F = (1,...,n). Each one may be real, discrete or a Grassmann anti-

commuting variable. 

 Define an action functional on the field variables S(F). 

 Calculate the partition function 

 Z e diS n    

 Define observables as functionals on the variables Oi(F). 

 Calculate expectation values of the observables. 

 O
Oe d

Z

iS n


 

 

 Finally, it may be necessary to take a limit of some sequence of such models in which n   . 
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For such a model to make sense as a quantum system it is necessary that the action functional S is real and the 

integral well defined. It is also of interest to study models where S is imaginary. In that case we can write,  

S i E

Z e

kT

E















1

 

so such a model can be interpreted as a classical statistical physics system at a temperature T. It is common 

practice in numerical lattice theory to replace a quantum system with a statistical one obtained by performing a 

Wick rotation from the Lorentzian sector to the Euclidean sector. In lattice quantum gravity it is also possible 

to replace Einstein gravity by a statistical model which can be regarded as gravity in a Riemannian sector. It is 

not yet known how valid such a transformation is but it is certainly worth studying.  

There are also both quantum and statistical models of event-symmetric systems. Ultimately we must be 

interested in quantum systems but it is possible to gain much insight into the nature of event-symmetric space-

time by studying toy-models, most of which are statistical in nature. 

To illustrate this we shall solve the event-symmetric Ising model. This consists of a large number N of 

feromagnets represented by spin variables 

s a Na   1 1, , ,  

Each spin interacts equally with every other spin according to the energy function, 

E s sa b

a b




  

This has S(N) invariance since it is symmetric under spin permutations. It has an additional Z2 invariance 

under global spin reversal. Solving the partition function of this model is not very difficult. 

Z e E

sa

  

{ }

 

Write this as a sum over K negative spins and N - K positive spins 

Z
N

K N

N
N K N K

K

N










   









0 2

1 2exp( ( ) ( ) )


 

In the large N limit this can be approximated (up to a constant factor independent of N) by an integral over a 

variable  

p K N  

Z dp N p p p p p p
p

      


 exp{ ( [ ( ) ln( ) ( ) ln( ))}
0

1

1 2 2 1 1 1  

In this equation we have scaled  as a function of N such that, 

  N  

is kept constant as N   .  
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The function in the exponential has one minimum at  p = 1/2  for  < 1 and two minima for  > 1. The large 

N  limit forces the system into these minima so there is a phase transition at  = 1 with the Z2 symmetry 

broken above. 

Also of some interest is the gauged Ising model in which the spin variables are placed on event links. 

s a bab   1,  

The energy is now a sum over triangles formed from three links 

E s s sab bc ac

a b c


 

  

This model again has an S(N) event-symmetry and the Z2 symmetry is now extended to a gauge symmetry. 

This is already too complicated to solve exactly by any obvious means. 

Hidden Symmetry and Molecular Models 

It will be difficult to accept the principle of event-symmetric space-time without a correspondence principle 

which reduces an event-symmetric model to recognised theories of physics. In particular it will be necessary to 

explain how the symmetric group is reduced to the diffeomorphism group on a 3+1 dimensional manifold 

which we know as the invariance of general relativity. 

An obvious possibility is that there may be a mechanism of spontaneous symmetry breaking which breaks the 

symmetric group and leaves the diffeomorphism group as its residual symmetry. By analogy with such 

mechanisms in statistical mechanics and particle physics we might suppose that there are phase transitions at 

high energy scales above which the event-symmetry is restored. This is difficult to imagine but fortunately 

nature has provided us with a familiar phenomena which, by analogy, can give us an intuitive feel for how 

such a mechanism might operate. Namely, soap film bubbles! 

Consider the way in which soap bubbles could arise in a statistical physics model of molecular forces. The 

forces should be functions of the relative position vectors Xa and orientation vectors Ua of N soap molecules. 

For simplicity kinetic energy is neglected and a potential energy function will be defined, 

E V X X U U
ab

a b a b ( , , , )  

A partition function is then derived. 

Z dXdU
E

e





 

The potential should tend rapidly to a constant at large distances in order to suppress long range interactions, 

and should be invariant under global translations and rotations. Furthermore, the potential should be invariant 

under exchange of any two molecules. This introduces a symmetry described by the symmetric group S(N). An 

analogy then exists between the molecular model and a model of event-symmetric space-time. Molecules 

correspond to space-time events.   

The statistical behaviour of the model will depend on the form of the potential energy function. It must be 

chosen very carefully for there to be a phase in which bubbles form. The forces must favour alignment of the 

molecules in such a way that they tend to form two dimensional surfaces at the minimum energy. 

The distance between each pair of molecules is given by, 

r X Xab a b | |  

and the angle between the orientation of a molecule and the line joining it to another is, 

cos( )
( )

 ab
a a b

ab

U X X

r


 
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A suitable potential is, 

V r eab ab ba

rab   [ sin ( ) sin ( )]4 1 2 2   

In the case of a system with just three molecules the minimum configuration is an equilateral triangle with 

length of side r = 1 + 3 and each molecule orientated perpendicular to the triangle. Many molecules will 

likewise try to arrange themselves in triangles which will join to a planar lattice. The attraction of molecules 

will draw the molecules closer together to a spacing of   r = 2.13... The attraction at long distance is too weak 

to destabilise this configuration. 

At zero temperature the molecules will fall into the low energy two dimensional lattice. If there are a large but 

finite number of molecules they will almost certainly arrange themselves on the surface of a polyhedral 

structure which would appear like a frozen crystalline bubble. We are more interested in what will happen at 

non-zero temperature. It is impossible to be certain of the behaviour without detailed analysis or a numerical 

simulation but for the purposes of  this example it is enough to conjecture. 

At low temperatures the bubble will start to melt and it is easy to imagine that it will start to deform in shape. 

It is likely that there will be a low temperature at which there is a phase transition. Above this temperature the 

molecules will no longer stay in the lattice formation but will be able to flow around the bubble. This melting 

phase transition can be compared to a model of space-time as a critical solid (Orland 1993). It will be possible 

for the bubble to change topology by splitting or forming holes. At a higher temperature the bubble must 

eventually evaporate to form a gas with no apparent topological form. 

The conjecture, therefore, is that the bubble model has three phases as temperature changes, a solid phase, a 

liquid phase and a gas phase. The interpretation in terms of event-symmetric space-time is that the liquid 

bubble phase is analogous to 2 dimensional quantum gravity in its Riemannian sector. At high temperatures 

space-time evaporates into a gas of events. In the gas phase the event-symmetric nature of space-time is 

evident but time and space as we know them have no meaning. The dimension of space-time has changed at 

the phase transition from two to three.  

In the liquid phase space-time appears to have recognisable properties such as curvature and its event-

symmetric nature is no longer evident. We might say that the symmetry of event-symmetric space-time has 

been spontaneously broken leaving diffeomorphism invariance as a residual symmetry, but some caution is 

needed. There is no apparent order parameter which would enable us to distinguish qualitatively between the 

liquid and gas phase. Furthermore, the bubbles can change topology so we cannot identify the diffeomorphism 

group of one specific manifold as the residual symmetry. The model actually has a more general phase diagram 

in which density is a parameter as well as temperature. The density can be controlled by placing the molecules 

in a finite sized box. It is well known that in the phase diagram of water it is possible to go from the gas phase 

to the liquid phase without passing through a phase transition if a high pressure is applied. The same thing 

may happen with the bubble model. 

In view of this it is preferable to say that event-symmetry is hidden rather than broken. It is worth recalling 

that in General Relativity diffeomorphism invariance is also hidden without being broken. There is no 

evidence of space-time curvature at human distance scales and before the theory of general relativity, it was not 

at all obvious that physics was invariant under general changes of co-ordinate system beyond the Poincaré 

transformations. Similarly I propose that physics is invariant under permutations of space-time events even 

though it does not appear to be the case. 

The physical interpretation of the gas phase is spectacular. Space-time itself may evaporate at very high 

temperature or density, with changes of space-time dimension or possibly loss of all concept of dimension. If 

the principle of event-symmetric space-time holds then this must be the fate of matter when it is compressed at 

the singularity of a black hole. A similar description of the initial state of the universe may be possible. 

It is probable that both the bubble model and real physics have a richer phase diagram in the high density and 

temperature corner than that described here.   

Topology and Random Graphs 

The molecular models of the previous section require an external space in which to embed bubbles 

representing space-time. One of the strengths of the theory of general relativity is that it formulates curved 

space-time intrinsically without the need to refer to any external space. Most of the event-symmetric models 
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are also intrinsic in nature but the lack of an external space-time makes it more difficult to see how a finite 

dimensional space-time could arise through a mechanism of symmetry hiding. 

The simplest type of model for which this might be possible are random graphs in which N nodes, or space-

time events, are randomly pair-wise connected by ½N(N-1) links. Each graph is defined by link variables lab ,a 

< b which are conventionally given the value 1 if the nodes a and b are linked and 0 otherwise. Such systems 

have occasionally been studied as pregeometric models of space-time (Dadic, Pisk 1979; Antonsen 1994; 

Requardt 1995). 

An event-symmetric action (or energy) for a random graph is a function of the graph which is invariant under 

permutations of the nodes. For example, actions defined as functions of the total number of links L and the 

total number of triangles T in the graph would be event-symmetric. The partition function might be defined as 

follows, 

L l

T l l l

E T L

Z e

ab

a b

ab bc ac

a b c

E

lab





 





 













{ }

 

It is interesting to see if we can define dimensionality on a random graph. For a given node we can define a 

function L(s), the number of nodes which can be reached by taking at most s steps along links. If L(s) obeys a 

power law on an infinite graph for all nodes, 

l s s as sD( )   

then the graph has dimension D. There are other ways to define dimensionality including at least one which 

works for finite graphs (Evako 1994). 

For the example partition function above we might hope  that there is a phase in which the expectation value of 

dimension takes some interesting value like 3 or 4. The action favours triangles in the graph while 

disfavouring links. If the balance between the two were to favour structures of low dimension then we would 

have a similar mechanism of space-time formation and event-symmetry hiding as we did in the soap-film 

model but in this case there would be no artificial extrinsic space in which it was embedded. 

In fact it seems to be quite difficult to construct random graph models which dynamically generate space-time 

in a fashion similar to the soap-film model. There is at least one model which manages to easily produce a one 

dimensional space-time. The action is defined as 

 

V l l

E V

a ab

b a

ba

b a

a

a

 

 

 

 

 2
2

 

Va is the valence of event a and the energy function will be minimised when there are exactly two links 

connected at each node. This will obviously result in  linear structures at low temperatures. 

Random graph models can be studied in detail either analytically using such methods as mean field theory, or 

numerically using monte-carlo algorithms. Through careful analysis, it may be possible to contrive an action 

which generates manifolds of 2, 3 or 4 dimensions. Here I will choose to skip past those avenues, which are 

likely to be dead ends, and follow another which seems to lead to better things. 

The concept of random graph can be extended by introducing higher dimensional variables. A variable similar 

to the link variable but with three event indices, tabc , a < b < c, could indicates the triple connection of the 
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vertices of a triangle if its value is one, and the absence of a connection if its value is zero. It is convenient to 

extend the array of values using anti-symmetry and allow its elements to take on values -1, 0 or 1, 

t t tabc bac acb     

With these variables it is possible to construct actions which force the triangles to join together forming two 

dimensional surfaces at low temperature just as it is possible to form one dimensional structures with random 

graphs. For example if, 

L t

E L

E t

ab abc

c

ab

ab

abc

abc













1

2

2

2

 

The term E1 will be minimised when an equal number of positive and negative variables meet at each edge. 

This corresponds to an orientated triangulated surface which is allowed to cross itself. Other terms such as E2 

can be included in the action to control the area of the surface.  

In this way it is possible to define systems which are event-symmetric but which also approximate dynamical 

triangulations of surfaces as used with considerable success in numerical studies of 2 dimensional Riemannian 

quantum gravity (Boulatov et al. 1986). An important aspect of such a system is that it automatically includes 

a sum over different surface topologies. Obviously the principle can be extended to variables of dimension 

higher than two, by straight forward generalisation to antisymmetric forms with more indices corresponding to 

tetrahedrons and higher order simplices in the graph. 

There are two important lessons to be learnt here. The first is that higher dimensional variables are likely to 

give more interesting models than those which just use site and link variables. The second is that systems 

incorporating a suitably weighted sum over topologies can be considered event-symmetric. As a topic for future 

research it would be worthwhile to consider what constraints event-symmetry imposes on the weightings in 

such a sum. 

One displeasing aspect of  both the random graph models and the molecular models, is that the number of 

dimensions of space-time which they form is put in artificially. Ideally we would like to see the number of 

dimensions arise as a purely dynamical result. Perhaps the number of dimensions should be able to change 

through phase transitions. This suggests we should consider models with a mixture of  variables of different 

dimensions. An elegant model might include the link and triangle variables defined above along with variables 

corresponding to simplices of all other possible dimensions. 

s v l ta ab abc, , , ,  

If each variable is anti-symmetric in all indices and there are N events then the sequence will stop with a 

variable of N indices. I will not endeavour to consider what might be suitable terms to use in an action with 

such variables since new principles would be needed to find them. At this point I just want to note the fact that 

the total number of variables is 2N .This is a huge number in comparison to the event-symmetric Ising model 

which has N variables and 2N states. 

Gauge Symmetry and Matrix Models 

The random graph models and their generalisations use variables which can take on one of a number of 

discrete values. Such models allow us to incorporate event-symmetric space-time which we propose as an 

extension of the diffeomorphism invariance of general relativity. In particle physics we are familiar with other 

symmetries represented by continuous Lie groups. It is conceivable that such symmetries could emerge in a 

discrete model in some limit but the philosophy behind event-symmetric space-time dictates that symmetries 

should appear exactly in the most fundamental formulation. Furthermore, it would be pleasing if the space-

time symmetries could be unified with the internal gauge symmetries of particle physics. 
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For this reason I prefer to consider models with continuous rather than discrete variables. We might also 

remark that if fermions and supersymmetry are to be included we will also have to permit anti-commuting 

Grassmann variables. While the discrete variable models have the character of mathematical logic, graph 

theory and combinatorics, models with continuous variables will naturally have the character of algebraic 

mathematics. 

Just as almost any physical continuum model can be discretised to produce a lattice theory, it is also possible to 

produce event-symmetric models corresponding to scalar field theories and gauge theories. The Wilson 

formulation of Lattice gauge theory (Wilson 1974) can be immediately given an event-symmetric counterpart 

in which the cubic lattice is replaced with a graph of N events in which each one is linked to each other and a 

matrix group variable is assigned to each link. Gauge invariant actions can be defined in terms of the sum over 

the trace of products taken around each triangle in the graph. 

While such models may be of some interest in other contexts (Rossi, Tan 1994), they fail to satisfy our needs 

here because firstly, there is no mechanism which allows the links to connect to form different topologies and 

secondly, the symmetric group is not unified with the gauge group. The first defect may be remedied by 

combining a random graph model with a gauge model to form a kind of gauge glass (Bennet et al, 1987) but to 

cure the second we must go further. 

Consider event-symmetric models in which we place real valued field variables Aab on links joining all pairs of 

events (a, b). Such models are analogues of the random graph models with the discrete variables replaced by 

continuous ones. A suitable action must be a real scalar function of these variables which is invariant under 

exchange of any two events. 

The link variables Aab can be regarded as the elements of a square matrix A. If the direction of the links is 

irrelevant then the matrix can be conveniently taken to be either symmetric or anti-symmetric. If there are no 

self links the diagonal terms are zero so it is natural to make the matrix anti-symmetric. 

A Aab ba   

 A possible four link loop action is 

S A A A A m A

Tr A mTr A

ab bc cd da

a b c d

ab

a b

 

 

 



, , , ,

( ) ( )

2

4 2

 

This action is not only invariant under the symmetric group acting on events but also the orthogonal group 

acting as similarity transformations on the matrix. The symmetric group S(N) is incorporated as a sub-group of 

O(N) represented by matrices with a single one in each row or column and all other elements zero, in such a 

way that the matrix permutes the elements of any vector it multiplies. 

This is an appealing scheme since it naturally unifies the S(N) symmetry, which we regard as an extension of 

diffeomorphism invariance, with gauge symmetries. If the symmetry broke in some miraculous fashion then it 

is conceivable that the residual symmetry could describe quantised gauge fields on a quantised geometry. 

Consider for example a discrete gauge SO(10) symmetry on a 4 dimensional periodic hypercubic lattice of L = 

M 4 points. The full lattice gauge symmetry group Lat(SO(10),M) is generated by the gauge group SO(10)L and 

the lattice translation and rotation operators. A matrix representation of this group in 10L x 10L orthogonal 

matrices can be constructed from the action of the group on a 10 component scalar field situated on lattice 

points. The lattice group is therefore isomorphic to a sub-group of an orthogonal group. 

Lat SO M O L( ( ), ) ( )10 10  

We can imagine a mechanism by which the O(10L) symmetry of a matrix model broke to leave a residual 

Lat(SO(10),M) symmetry. It seems highly unlikely, however, that such an exact form of spontaneous symmetry 

breaking could arise naturally. 

Random matrix models have been extensively studied in the context where N is interpreted as the number of 

colours or flavours. The event symmetric paradigm suggests an alternative interpretation in which N is the 

number of space-time events times the number of colours. This interpretation has been considered before 

(Kaplunovsky, Weinstein 1985). 



The Principle of Event-Symmetry 

 

 11 

This suggestion for unification of space-time and internal gauge symmetry might be compared with the similar 

achievement of Kaluza-Klein theories where space-time is extended to have more dimensions and the 

symmetry is broken by compactification of one or more of the dimensions. With matrix models the symmetry is 

much larger and could be compared with a Kaluza-Klein theory which had an extra dimension for each field 

variable (Kaneko, Sugawara 1983). 

An interesting result for matrix models which is responsible for them attracting so much attention, is that the 

perturbation theory of a matrix model in a large N double scaling limit is equivalent to two dimensional gravity 

or a  c = 0 string theory (‘t Hooft 1974; Kazakov 1989; Fukuma et al 1992). 

We have discussed matrix models with an O(N) symmetry but models based on hermitian matrices and having 

unitary U(N) symmetry are equally interesting as are models with invariance under the symplectic groups 

Sp(N). It is just as easy to construct supersymmetric matrix models using the familiar families of super-

symmetry matrix groups U(L|K) and OSp(L|K) (Gilbert, Perry 1991; Alvarez-Gaume, Manes 1991; Yost 1991).  

As an example we might use super-hermitian matrices which take a block form as follows,  

S
A B

iB Ct









  

where A is a hermitian K x K matrix of commuting variables, B is a K x L matrix of anticommuting variables 

and C is a hermitian L x L matrix of commuting variables. The supertrace is defined as, 

sTr S Tr A Tr C( ) ( ) ( )   

Actions defined with terms expressed as the supertrace of powers of the super-matrices are invariant under a 

U(K|L) super-symmetry. This can be interpreted as an event-symmetric model with two types of event since the 

super-group has a subgroup isomorphic to S(K) X S(L). 

Locality and Tensor Models 

Just as random graph models can be generalised to models with higher dimensional variables, matrix models 

can likewise be generalised to tensor models. The action can be a function of any set of scalars derived from 

the tensors by contraction over indices, with the indices ranging over space-time events. Such models have the 

same O(N) symmetry as matrix models. 

In tensor models it is often useful to associate tensors which have certain symmetry constraints with geometric 

objects having the same symmetry in such a way that the indices correspond to vertices of the object. For 

example a rank 3 tensor which is symmetric under cyclic permutations of indices. 

T Tabc bca  

can be associated with a triangle joining the three vertices a, b and c. If, in addition, the tensor is made fully 

anti-symmetric then degenerate triangles with two or more vertices at the same event are eliminated and the 

sign change is useful to indicate orientation reversal of the triangle. Often models of interest use anti-

symmetric rank-d tensors which can be associated with a system of orientable d-simplices. 

We should look for a tensor model with a symmetry hiding mechanism such that the dynamics separate some 

events which can then be regarded as being at far distances on a manifold, while others remain close to each 

other. In other words we need to generate local interaction. Event-symmetric space-time seems to be contrary 

to locality but happily there are principles of locality which can be invoked independently of any event-

symmetry hiding mechanism. 

In each of the models we have looked at there are field variables which have an association with one or more 

events. In matrix models the matrix element Aab is associated with two events indexed by a and b. They 

represent an amplitude for the connection of those two events as linked neighbours in space-time. In tensor 

models a tensor of rank r is likewise associated with r events. When symmetry hiding occurs we expect the 

events to somehow spread themselves over a manifold. A field variable associated with events which are not 

near neighbours should be physically insignificant, this will usually mean that it is very small. Field variables 

which are associated with a local cluster of events can be large and would be significant in a continuum limit. 

Two such variables which are localised around different parts of the manifold should not be strongly 
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correlated. They must therefore not appear in the same interaction term of the action unless multiplied by some 

small field variable. 

This heuristic picture leads to a definition of locality in which interaction terms in the action are excluded if 

they factor into the product of two parts which do not share events. For example, in a two matrix model with 

matrices A and B the action could contain terms such as Tr(ABAB) but not Tr(AB)2 or Tr(A)Tr(B).  

More precisely we can define an interaction graph corresponding to any interaction term. The graph would 

have a node for each component variable in the term. Two nodes are then linked if the variables are associated 

with at least one event in common. 

We then say that the model satisfies the weak locality principle if all interaction graphs are connected. We will 

also say that it satisfies the strong locality principle if every pair of nodes is linked in all interaction graphs. 

I.e. they are triangles, tetrahedrons or higher dimensional simplices. 

As an example, a matrix model with terms given by the traces of powers of the matrix, 

I Tr An

n ( )  

are weakly local because the interaction graphs are at least n-sided polygons. If the model includes only terms 

up to I3 then it is strongly local. 

It is reasonable to expect that physical event-symmetric field theories would have to be at least weakly local 

since otherwise non-local interactions would persist after a symmetry hiding mechanism has taken effect. 

There seems to be no special reason to demand that a theory should be strongly local but it is notable that this 

condition often reduces the number of possible interaction terms from infinity down to a few without seeming 

to exclude the most interesting models. 

There is one particular form of tensor model which deserves a brief mention here. It is defined with simplex 

variables such as the anti-symmetric rank 3 tensor Tabc associated with triangles. We define an action with 

terms who’s connectivity represents a simplex of one higher dimension e.g. 

S T T T Tabc ade bdf cef

a b c d e f

 
, , , , ,

 

Just as the perturbation theory of a matrix model describes randomly triangulated surfaces, the perturbation of 

these tensor models define random simplicial models of higher dimensional surfaces (Ambjorn et al 1991; 

Sasakura 1991). These tensor models do not exhibit the same universality properties which make the matrix 

models so powerful. This fault has been corrected by Boulatov who replaces tensors with multivariate functions 

on groups (or quantum groups) and defines an action which generates 3 dimensional topological lattice field 

theory (Boulatov 1992).  

 

Particle Models and Clifford Algebras 

We have seen how anti-symmetric tensor forms can be associated with simplices in event-symmetric space-

time and how they might interact together to form manifolds. We will now explore the possibility of a model 

which includes such variables on simplices of all possible dimension. I.e. the model is defined by a sequence of 

anti-symmetric forms, 

   , , , ,a ab abc  

Since there are only a finite number N of events the family will end with a rank N tensor having only one 

independent component.  

There are many actions which could be constructed from these tensors if we just require the O(N) symmetry. 

Such models have a huge number of degrees of freedom, one for each possible simplex with vertices on space-

time events. Perhaps we could impose a much larger symmetry so as to reduce the number of possible models 

and at the same time, the effective number of degrees of freedom. 
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A natural way forward is to interpret the family of anti-symmetric forms as the components of either an 

exterior algebra or a Clifford algebra. Here we choose the latter option. A set of gamma operators form the 

generators of the algebra modulo the usual anti-commutator relations. 



  

a

a b ab

a N, , ,

[ , ]





1

2


  

It follows that the algebra has dimension 2N  and an element can be written, 

          a a

a

ab a b

a b,

 

A Clifford algebra is an associative algebra with unit and it has a Z2 grading given by the parity of the number 

of gamma operators in a product. The graded commutator is therefore a product for a Lie super-algebra. This 

supersymmetry is much larger than the O(N) symmetry of the general tensor model and from now on we will 

impose it as a symmetry of our models. It is well known that the second order operators γaγb generate the 

orthogonal lie-algebra so event-symmetry is contained within this algebra. 

Clifford algebras play several useful roles in particle physics. For example they are of crucial importance in 

construction of spinors and supersymmetry. These points in themselves are sufficient to justify their use here. 

However, there is a third role played by Clifford algebras which may be even more significant. The single 

gamma matrices together with the unit generate a Lie superalgebra which is known as a Heisenberg algebra. If 

N is even the operators can be paired to form a system of N/2 fermionic creation and annihilation operators, 

b i

b i

i i i

i

t

i i

 

 





1

2

1

2

2 1 2

2 1 2

( )

( )

 

 

 

From this we deduce that the Clifford algebra is isomorphic to the algebra of fermionic operators and is 

effectively a Fock space for a species of identical fermions and their anti-particles. The importance of this is 

that it links the event-symmetry of space-time to the symmetry of identical particle exchange and suggests a 

realisation of Mach’s claim that space-time is generated by interactions of matter. 

To construct an event-symmetric model we treat the components of the algebra as field variables. Because of 

the supersymmetry it is necessary to take the odd rank tensors as anti-commuting Grassmann variables. We 

must define an action which is an invariant of the supersymmetry. The highest rank operator of the algebra is 

usually written, 

 N a

a

 1   

Which has a pseudo-scalar component ξ*.  We discover that the linear function I1  mapping the algebra onto 

this component is an invariant. 

I

I

1

1 0

( )

([ , ])

*

 



 


 

An infinite sequence of invariants can be generated by applying this function to powers. 

I In

n( ) ( )  1  

If these are to be suitable terms in an action functional then N must be even, otherwise the invariants are anti-

commuting variables. Examining the form of these invariants reveals a dramatic locality problem. Whereas we 

wished all terms to be formed from local contractions over indices we find that each term has products of 
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tensor components which include every index exactly once. This problem is resolved by observing that a field 

variable which can be associated with every event except a small set can equally well be associated with the 

small set through the Hodge star duality transformation 

 *  

The invariants can now be written as expressions combining the components and their duals which satisfy our 

ideas of locality. 

Having constructed such a satisfying model which seems to unify space-time and matter we might well feel 

encouraged to study its dynamical behaviour with some sense of optimism. However, it is well known that the 

gamma matrices which generate the Clifford algebra have a representation in matrices of size D x D where 

D N 2 2/
 

Because of the Grassmann variables these can be taken as supermatrices. Since the dimension of the algebra is 

the same as the dimension of the matrices as a vector space it follows that there is an isomorphism between the 

Clifford algebra and the algebra of supermatrices over complex numbers. The invariants we have used are 

merely the trace of these matrices to the nth power and it follows that the model we have described is 

mathematically equivalent to a supermatrix model. Such models are not likely to be rich enough to provide a 

complete description of physics. 

Despite this the model has interesting properties and we will go on to find that modifications to the model can 

make it more promising. It is also worth noting the possibility of relationships with other applications of 

Clifford algebras to models of space-time physics (Finkelstein 1982, Smith 1994) 

Event-Symmetric String Theory 

Despite the enormous number of papers written on superstring theory and the rich mathematics discovered in 

the course of that research, physicists still appear to be far from understanding its origins. It is generally 

believed that string theory has a huge hidden symmetry which is restored at very high energies (Gross 1988). If 

the nature of that symmetry could be understood then it might be possible to construct a fundamental 

formulation of string theory which would allow its non-perturbative phenomenology to be studied. 

A result of great significance here is that in string theory it is possible to make smooth transitions between 

topologically distinct space-time backgrounds (Aspinwall et al 1994). As I have already argued, the combined 

requirements of space-time symmetry and topology change seem to force us to accept the principle of event-

symmetric space-time. 

This is sufficient justification to seek an event-symmetric model of string field theory. That is not an easy task 

since there is no completely satisfactory formulation of continuum string theory which might be discretised in 

some event-symmetric fashion. One clue must be matrix models which are equivalent to c = 0 string theories 

and which we can interpret as event-symmetric. We should also take into account the Clifford algebra model 

which we saw as a model of fermions but which also included supersymmetry.  

If we could find a suitable description of string symmetry then the job would be at least half complete. For 

mathematicians, classifying symmetries has been a priority problem throughout the 20th century. Most 

promising for our purposes must be the various forms of Kac-Moody algebras and quantum groups which are 

related to conformal field theory (see e.g. Pressley, Segal 1986; Fuchs 1992). Kaku tried to formulate symmetry 

for string theory in terms of Lie algebras described on topological strings (Kaku 1988; Kaku 1990). Other new 

forms of symmetry have been found in string theory such as W

-algebras (e.g. Shen 1992; Bouwknegt, 

Schoutens 1993) and it is known that string theory compacted onto a 26 dimensional torus possesses a 

symmetry known as the Fake Monster Lie algebra (see e.g. Gebert 1993). Despite all these discoveries, there 

are large gaps in the understanding of infinite dimensional symmetry algebras and nothing is yet known which 

can include all the supposed symmetries of string theory while at the same time unifying space-time 

symmetries with internal gauge symmetries and explaining its remarkable dualities (e.g. Hull, Townsend 

1995).  

In an event-symmetric space-time a string is most easily represented by a loop connecting a cycle of space-time 

events and is therefore an object made of discrete points. This may seem unnatural since string theory is 

normally regarded as a theory of continuous strings. However, it is possible that strings are topological in 

nature and could be exactly described as discrete strings with a finite spacing between events (Klebanov, 
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Susskind 1988; Thorn 1991; Kostov 1995). The topological from will most likely become apparent through a 

q-deformation in which the partons of the discrete strings take on fractional statistics.  

In a number of pre-prints (Gibbs 1994b; 1994c; 1995a) I have previously tried to construct Lie-algebras based 

on such discrete loops in analogy with Kaku’s string groups. Although this work produced many positive 

results it turned out to be flawed since the Lie-superalgebras I constructed for closed loops do not satisfy the 

graded Jacobi identity in all cases (Borcherds 1995). The result of correcting the anomaly is a tidier 

formulation which I believe has much more promise for possibility of generalisation and deformation. It will be 

presented in its most basic form here for closed strings. 

Let E  be a set of N space time events and let V = span(E) be the N dimensional vector space spanned by those 

events. Then define T = Tensor(V) to be the free associative algebra with unit generated over V. The 

components of T form an infinite family of tensors over V with one representative of each rank. 



 



   

{ , , , , }

{ , , , }

   

           

a ab abc

a a ab a b ab



1 2 1 2 1 2 1 2 1 2 1 2 1 2
 

The basis of this algebra already has a geometric interpretation as open strings passing through a sequence of 

events with arbitrary finite length. Multiplication of these strings consists merely of joining the end of the first 

to the start of the second. We can denote this as follows, 

         a

a

ab abc

a b ca b

a ab abc 
, ,,

 

We now construct a new algebra by adding an extra connectivity structure to each string consisting of arrows 

joining events. There must be exactly one arrow going into each string and one leading out. This structure 

defines a permutation of the string events so there are exactly K!  ways of adding such a structure to a string of 

length K. 

 

These objects now form the basis of a new algebra with associative multiplication consisting of joining the 

strings together as before, while preserving the connections. Finally the algebra is reduced modulo 

commutation relations between events in strings which are defined schematically as follows, 

 

These are partial relations which can be embedded into complete relations. Closed loops which include no 

events are identified with unity. For example, the lines can be joined to give, 

 

       a   b   c   d   e   f  

 a   b    +     b   a    =  

2ab 

 a   b     +     b   a     =  2δab 
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This example shows the cyclic relation on a loop of two events. The arrows can be joined differently to give 

another relation, 

 

which is the anti-commutation relation for loops of single events. 

By applying these relations repeatedly it is possible to reorder the events in any string so that the strings are 

separated into products of ordered cycles. Therefore we can define a more convenient notation in which an 

ordered cycle is indicated as follows, 

 

We can generate cyclic relations for loops of any length such as, 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

ab ba

abc cab a b

abcd d abc ab d c bc

ab

bc ac

cd ba ad

  

  

    

2

2 2

2 2 2



 

  

 

and graded commutation relations such as, 

( )( ) ( )( )

( )( ) ( )( ) ( ) ( )

a b b a

ab c c ab a b

ab

bc ac

 

  

2

2 2



 
 

Clearly the algebra has a Z2 grading given by the parity of the length of string and it is therefore possible to 

construct an infinite dimensional Lie-superalgebra using the graded commutator.  

The length one cycles are the generators of a Clifford algebra and there is also a homomorphism from the full 

algebra onto a Clifford algebra defined by removing the loop structure from the strings. 

The physical interpretation is that this algebra describes the symmetry of a discrete superstring formed from 

loops of fermionic partons in event-symmetric space-time. Mathematically it appears to be an entirely new type 

of symmetry which is likely to have generalisations and deformations that could be of some significance. 

Conclusions 

I have introduced the principle of event-symmetric space-time and argued for its validity despite its unlikely 

seeming consequences. In event-symmetric models the nature of space-time, including its topological structure, 

are dynamically determined. A physical consequence is that at very high temperatures space-time may change 

dimension or even evaporate, losing all sense of causality and locality. 

In a series of toy models I have tried to gain a feel for what a correct event-symmetric theory should look like 

and behave like. This has led to algebraic models with high degrees of symmetry. The most advanced models 

are event-symmetric discrete string theories.  

To finish the work on event-symmetric string theory it will probably be necessary to deform the string algebras 

described here. It is probably necessary to model a string as a loop of particles with fractional statistics rather 

than fermions. Such a deformation is might be possible if the loops are replaced with knots.  

To complete the theory it will also be necessary to define the dynamics of the system and discover a 

correspondence with recognised space-time physics. There is still along way to go. 

a      b   +     b      a     =  2δab 

( )ab c            =      a       b     . . .      c 
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