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[Abstract] Tetrahedral symmetric condensate (TSC) with 4 deuterons and 4 electrons has 
been proposed as a seed of clean 4D fusion with 4He product in condensed matter. To solve 
molecular dynamics motion of 4D/TSC condensation, a nonlinear Langevin equation was 
formulated with a Coulombic main condensation force term under Platonic symmetry, 6 
balancing forces by quantum mechanical electron clouds of dde*(2,2) EQPET molecules on 6 
faces of TSC cube and a random quantum mechanical fluctuation term f(t) for d-d distance. 
Gaussian wave functions for d-d pairs and their ground state energies were first obtained by 
variational method, for D2 and EQPET molecules. Then same sigma-value was used for 
time-dependent Gaussian wave functions of d-d pairs of TSC system to calculate the 
ensemble-averaged <f(t)> for changes of Coulomb energy and force of distorted TSC system 
deviated from the ideal double Platonic symmetry. Molecular dynamics calculation with TSC 
Langevin equation by the Verlet time-step method was then done. We obtained mean relative 
final-stage d-d kinetic energy 13.68 keV with -130.4 keV deep trapping TSC potential at 
Rdd-minimum = 25 fm and time-to-TSC-minimum =1.4007 fs. Mean kinetic energy of electron 
of a “d-e-d-e” EQPET molecule of TSC system was estimated as 57.6 keV at Rdd =25 fm. These 
time-dependent trapping potential for d-d pair of TSC can be approximated by HMEQPET 
potentials with the empirical relation of m=4.36x104/Rdd, (Rdd in fm unit), continuously as a 
change of condensation time or Rdd(t). Barrier factors for fusion reactions as a function of 
Rdd(t) and 4D fusion rate per TSC generation were calculated using these HMEQPET 
potentials and Fermi’s golden rule. We found that 4D/TSC got to the TSC-minimum state 
with 10 fm-20 fm radius in 1.4007 fs and 4D fusion rate was 100 % per 4D/TSC 
generation-condensation. Thus we concluded that 4He production rate by 4D/TSC was equal 
to two times of 4D/TSC generation rate in condensed matter (e.g., PdDx). 
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fast condensation, 100% 4D fusion, 4He generation, barrier factor, heavy Cooper pair 
potential,  
** This paper is a modified version of our submitted draft paper to LENR Source Book, ACS, May 2007 

mailto:akito@sutv.zaq.ne.jp


1. INTRODUCTION 
 In our previous work reported in Proceedings of ICCF131), we introduced a non-linear 
Langevin equation to study molecular dynamics motion of 4D/TSC condensation and gave the 
first step results. This paper describes the extended detail of the study on 4D/TSC 
condensation motion and resulting fusion rates producing almost purely 4He with 23.8 MeV 
per 4He. We will show in this paper that 4D fusion takes place 100% per TSC generation. 
 About the concept of Tetrahedral Symmetric Condensate (TSC) and theoretical EQPET 
models with numerical analyses by our past studies are reviewed in references2-13).  
 In our past studies on 4D/TSC or 4H/TSC models2-13), Coulomb barrier shielding is conceived 
to attain automatically by strong condensation motion to the central focal point keeping 
averaged charge neutrality of the system (focal point is T-site in one of our models for PdDx 
lattice dynamics; See Fig.1). Barrier penetration probability calculation for 2d pair or 4d 
cluster can be approximated by the EQPET formalism in average. And empirical treatment 
was applied for multi-body strong interaction between many deuterons under the Platonic 
symmetry. After the molecular dynamics calculation of 4D/TSC condensation motion, we have 
extended the EQPET model to the HMEQPET model (described in this paper) to treat 
time-dependent (equivalently Rdd- d-d distance- dependent) d-d pair trapping potential of 
squeezing TSC. The HMEQPET model utilizes the concept of heavy mass Cooper pair e*(m,2) 
to approximate the time-dependent d-d trapping potential continuously – hence we use 
non-integer values for m (mass number of electronic quasi-particle) according to the change of 
Rdd with time. Using approximate trapping potentials by HMEQPET, we can systematically 
calculate barrier factors (quantum mechanical tunneling probability of d-d pair and 4d 
cluster through HMEQPET potentials). Using time-integrated barrier factors and Fermi’s 
golden rule for nuclear fusion rate8), time-integrated 4D fusion yield per 4D/TSC 
condensation was calculated to be 100 % 4D fusion per TSC generation. Using same 
formalisms, we calculated 2D fusion rates for D2 molecule, muonic-dd-molecule and dde*(2,2) 
Cooper pair dd molecule to result in quite reasonable values.  
 To initiate TSC formation, three models are speculated in our previous papers (modeled with 
assumptions)2,5,6,8,10). One is the TSC formation in regular PdD lattice in D-flow from O-site to 
T-site by D-lattice-phonon excitation (See Fig.1). The second model is the TSC formation by 
the collision-combination process between trapped D2 molecule, being lost freedom of rotation, 
and incoming D2 molecule on surface of metal-D systems. The third idea is the random 
formation of TSC by combination of two “bosonized” molecules of dde*(2,2) in the near surface 
of Fermi-level gap of PdDx and CaO (or other insulator layer with low work function); 
generation of Cooper pair near on Fermi surface may play key role in this case (our paper to 
Proc. JCF710)). In every model, we have required the “bosonization” of electron-pair to make 
dde*(m,Z) molecular size diminished. Diminished TSC cluster or dde*(m,Z) molecule can 



move to a focal point (T-site, for instance in PdDx lattice) in the gap of tight lattice structure 
for further condensation motion. We need further detailed modeling for these TSC generation 
process in/on condensed matter. In this work, we start from the assumption that 4D/TSC at 
t=0 state exists and we try to solve the TSC condensation motion by molecular dynamics 
calculation with non-linear Langevin equation. 
 The basics of quantum mechanical approach for studying deuteron-clusters (D2, D2+, D3+, 
4d/TSC, 6D/OSC) dynamics by Langevin equation are given in our latest paper17). A historical 
summary on condensed cluster fusion models is given in our latest paper18).  
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   Fig.1: A model of 4D/TSC (t=0) formation in PdDx lattice, by phonon excitation of deuterons oscillating as 

harmonic oscillators at O–sites. 4 deuterons+ 4 1s-electrons may form a TSC cube around the central T-site, 

transiently with small probability which we need to estimate8). 

 

  

 
2. NON-LINEAR LANGEVIN EQUATION FOR TSC MOTION 
 We treat the TSC squeezing motion from TSC (t=0; just formed) to TSC-min (minimum size), 
as illustrated in Fig.2. The electron wave function at t=0 is set to a vector wave function of 6 
wings, each of which is an electron wave function of D2 molecule as given in reference11), on 6 
faces of TSC cube (see Fig.3). On each face of TSC cube, we have a “dede molecular like” 
arrangement. Therefore, TSC(t=0) system can be regarded as a combination of two 



orthogonally coupled D2-type molecules having 6 “d-ed-e”-molecular-like faces which are 
confined by main Coulombic condensation force -8.38/Rde2 as derived in our reference11).  In 
Fig.3, the feature of quantum mechanical electron cloud of 4D/TSC(t=0) is copied from our 
previous works7,8,11). Four “electron balls” of “bosonized electron pair” sit at vertexes of cube, 
alternatively with four deuterons, to form an orthogonally coupled two regular tetrahedrons 
of deuterons and electron-balls (Double Platonic Symmetry). A dede-molecular-like system 
has an electron torus of “bosonized” electron bond. By condensation of 4D/TSC, every 
dede-system on 6 faces diminishes and its d-d pair trapping potential is, in our final stage of 
this work, given by approximate HMEQPET potential as a function of time (or function of d-d 
distance Rdd(t)). Electron kinetic energy of torus bond in a dede-system at t=0 is the same 
with that for D2 molecule (18 eV), and increases with time-elapse to reach 57.6 keV at 
Rdd=20.5 fm of TSC-min state, as we show in this work. However, double Platonic symmetry 
(DPS) was kept until when 4D/TSC got to the TSC-min state, according to the results by the 
present molecular dynamics calculation with non-linear Langevin equation.  
 

 
Fig.2 Illustration of 4D/TSC condensation motion to TSC-min state, 4D fusion to form 8Be* intermediate 

compound nucleus and break-up to two 4He particles. 
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Fig.3 Feature of quantum mechanical electron cloud for 4D/TSC (t=0) c), compared with charge-weight 

distribution of quantum mechanical electron clouds for D-atom and D2 molecule11). 

 

 

In our previous works1, 17), we introduced the following non-linear Langevin equation for 
TSC motion, with distance in pm unit and energy in keV unit. 
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The first term of right side is the acceleration force to diminish d-d distance, by the main 
condensation force of TSC as we derived in our previous work11) for a DPS condition of TSC. 
The factor BA is usually 1.0. We later use adjusted BA factor (smaller than 1.0) for averaged 
treating of quantum mechanical random fluctuation term of force f(t). The second term of 
right side of Eq.(1) is the friction (or “deceleration” force) term by quantum mechanical 
electron clouds of 6 d-e-d-e systems on 6 faces of TSC cube. This is the balancing force 
(acceleration force for Rdd>Rmin, but mostly deceleration force to d-d distance diminishment 
for Rdd<Rmin) forcing d-e-d-e system to get back to the original d-e-d-e state (with 74.1 pm d-d 
distance). This frictional force is given by the following derivative of EQPET potential, 
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, detail function of which is given in Appendix. 
 The third term of right side of Eq.(1) is due to random fluctuation force. We model that this 
fluctuation source is generated by the quantum mechanical uncertainly of deuteron positions 
of TSC. We treat the formulation of f(t) and its ensemble average <f(t)> in the next Section 3. 
 
 
3. QM FLUCTUATION OF DEUTERON POSITIONS 
3.1 Guassian Wave Functions 
 To treat easily the wave function of d-d pair trapped by the shielded Coulomb potential 
Vs(Rdd; m,Z), we adopt here squared wave function of Gaussian form, as illustrated in Fig.4. 
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Fig.4: Screened tapping Coulomb potential of EQPET dde* molecule and Gaussian squared wave function for 

d-d pair. Rmin value is at Vsmin. Rgs=Rdd(gs), ground state d-d distance, and ground state energy Egs are 

calculated by GWF2 code, as explained later, based on variational principle. Strong interaction for nuclear 

fusion works only for Rdd≦r0 (5 fm), so that we need to estimate barrier factor from Rmin to r0 and <W> value 

for fusion rate formula by Fermi’s golden rule8,17).    



 
The squared wave function of Gaussian form for time dependent calculation is: 
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Unknown parameter σ was determined as explained in the following, based on the variational principle. 
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First, we need to make survey study on appropriate Gaussian wave functions (Eq.(4)) for 
known D2 molecule and ddμ (muonic dd) molecule, so as to find appropriate σ-formula, 
associating proper Rgs and Egs values. We survey system total energy to find energy-minimum 
condition by the following variational method. 
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, where H is the system Hamiltonian with reduced mass μ (1 for d-d and 1.2 for d-d), 
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We look for the conditions as, 
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We made a simple computer code GWF2 for this variational calculation to find Rgs, Egs and σ-formula.  
 First we show the results for ddμ (muonic dd) molecule, for which we have a good reference 
data14). Fig.5 shows the survey for σ-formula. 
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 Fig.5: Search for appropriate σ-formula, in the case of ddμ (muonic dd) molecule. We have chosen σ /Rgs = 0.3 

as appropriate value, in comparison with known wave function by Hale-Talley14).  

 
 In Fig.6, we show a result of search for Rgs and Egs for muonic dd molecule. Obtained 
Gaussian wave function was shown in Fig.7, compared with Hale-Talley results14) in Fig.8. 
We can say that we have realized a practically useful Gaussian wave function for muonic-dd 
molecule. Here, we note that the difference between dd and dt molecules is the difference in 
reduced masses; 1 for dd and 1.2 for dt. This difference does not make significant difference in 
calculated wave functions and potentials. 
 Then we extended the variational search for D2 molecule and dde*(2,2) EQPET molecule. We 
obtained the same value, σ/Rgs = 0.3 for every case, which we decided to use for 
time-dependent molecular dynamics calculations for TSC condensation motion. Gaussian 
wave functions and trapping potentials are shown in Figs. 9 and 10, for D2 and dde*(2,2) 
molecules.  
 We also note that Gaussian wave function is an approximate one, and is useful for analyses 
around mean values (expected values). However, accuracy of probability in tails of Gaussian 
wave function is so poor that we can not use it for estimating barrier factor of fusion reaction. 
We need to introduce the other form of method for barrier factor calculation. We will 
introduce the HMEQPET method in Section 5, for the purpose. 
 
 

 
 



 

Egs-try (keV) vs. Rgs-try (pm) for dd-muon with sigma/Rgs=0.3
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     Fig.6: Search for Rgs and Egs values with Gaussian wave function of ddμ molecule. 

 

Gaussian Wave Function and Vs Potential for dd-muon
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Fig.7: Gaussian wave function and shielded trapping Coulomb potential for ddμ molecule, calculated by 

GWF2 Code. 

 



After Hale-Tally, Proc. ICCF4, Trans. Fusion Technology, 26,4T (1994)448

Rgs= 805 fm for dd Gaussian WF

(-340 eV by dd Gaussian)

 
 Fig.8: Wave function and trapping Coulomb potential for muonic-dt molecule14), compared with parameters 

for muonic-dd molecule by GWF2 Code; Hale and Talley adopted “improved potential” by biasing about + 2.8 

keV for original shielded trapping Coulomb potential. 

 

D2 Molecule Potential and Gaussian Wave Function
calculated by GWF2 Code with sigma/Rgs=0.3
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 Fig.9: Gaussian wave function and shielded trapping Coulomb potential for D2 molecule, calculated by 

GWF2 Code; Ground state d-d distance Rgs = 76.7 pm, which is slightly larger than exact value 74.1 pm. 

Approximate Gaussian wave function gives in general a slightly larger Rgs value. Mean kinetic energy of d-d 

pair at ground state is 2.7eV, de Broglie wave length of which is reflected in the Gaussian wave function.  
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 Fig.10: Gaussian wave function and shielded trapping Coulomb potential for Cooper-pair dd molecule, 

dde*(2,2); we will use these data for estimating 2D (d-d) fusion rate in condensed matter.  

 
 Distortion of System Coulomb Energy by d-d Distance QM Fluctuation 
Following the uncertainty weighted by Gaussian wave function, d-d distance of 4D/TSC will 

fluctuate and distortion of double Platonic arrangement (DPS) takes place. We have 
estimated approximately the changes of total system Coulomb energy and main TSC 
condensation force by considering simple balance of geometrical Coulombic forces between 
deuterons and electrons, as illustrated in Fig.11.  
Distortion of system Coulombic force is obtained by elementary geometry practice (we omit 
explanation17)) as, 
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where energy is given in keV unit and Rdd in pm unit. 

 Now the random fluctuation source term of Langevin equation (Eq.(1)) is given as, 
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Fig.11: Distortion of Platonic Symmetry of 4D/TSC by the QM fluctuation of d-d distance. 
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Here we use generation of random Gaussian probability with mod-function for Monte-Carlo calculation.  

Since we have two d-e-d-e molecular systems, namely up- and down-D2-type quasi-molecules in TSC, 

total fluctuation becomes as, 
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Using the squared wave function of Eq.(3), we obtain a formula for ensemble-averaged fluctuation force 

<f(t)> as follows; 
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with 
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Here we have decided to adopt a little larger σ-value (0.373Rdd(t) was used) than 0.3Rdd(t) to do 
conservative estimation of fluctuation effect. Substituting Eq.(15) into Eq.(14), we obtain, 
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Now the Langevin equation for expected values (simply setting <Rdd(t)>=Rdd(t)) becomes as, 
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As a result, <f(t)> makes about 15 % positive bias (deceleration force) to main condensation 
force term (first term of right side of Eq.(17)), and we can merge this bias into the first term 
using BA factor (BA=0.873 in this case) in Eq.(1). 
 
 
4. NUMERICAL SOLUTION BY VERLET METHOD 
Equation (17) is highly non-linear, but we can solve numerically by the Verlet’s time-step 
method15), using the following formulas, 
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By using, 
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, for BA=1.0. 

A simple computer code TSC Langevin was made to carry out numerical computation for 4D/TSC 

condensation motion. Since the Equation (17) is highly non-linear, we need to be careful about the 

adiabatic choice of time mesh Δt. Time mesh may start with 0.01 fs, and we need to make 
stepwise smaller setting, e.g., 0.001 fs for intermediate range and finally very small 
time-mesh of 0.00001 fs (10-20 s). An example of results for BA=0.873 is shown in Fig.12, 
which is the standard result for 4D/TSC condensation motion. Last stage of condensation 
took place in very short time interval as about 2x10-20 s. 
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Fig.12: Results of TSC Langevin calculation for 4D/TSC condensation motion. TSC finishes condensation in 

1.4007 fs (and 100% breaks up by 4D fusion as explained later). At TSC-min state around Rdd=25 fm, relative 

kinetic energy of d-d pair becomes 13.68 keV and d-d pair is trapped within deep trapping potential with 

-130.4 keV depth (we explain later). For balancing force, Vs(Rdd;2,2) potential is used in this case. 

 
As an another trial, we used Vs(Rdd;1,1) potential for balancing force term and got results as 
shown in Fig.13. TSC finished condensation in 3.02095 fs in this case. Trend of acceleration in 
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 Fig.13: Results of TSC Langevin calculation using Vs(Rdd;1,1) potential for balancing term. 
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Fig.14: A trial calculation for large friction term (BA=0.73) by random fluctuation. 

       This is virtual case. 

 

 



the intermediate stage is steeper than the case of Vs(Rdd;2,2) potential, but situation to get to 
TSC-min state with similar size is the same. 
When the friction term of Langevin equation becomes large, we may have a constant velocity 

motion, as is the case of rain drop in the sky. A trial calculation using BA=0.73 is shown in 
Fig.14. In this virtual case, condensation motion moves with almost constant velocity (kinetic 
energy) for Rdd < 10 pm until when TSC-min state comes. 
 

 
5. HMEQPET METHOD 
 Now we move to formulate time-dependent d-d trapping potential of TSC condensation 
motion. The ensemble-averaged Langevin equation is rewritten as, 
 

4

2

22

2 )'(6.6
),;(

685.116
dd

dd

dd

dds

dd

dd
d R

RR
R

ZmRV
Rdt

Rd
m −

+
∂

∂
−−=                        (25) 

 

We speculate the total d-d trapping potential form, assuming  that <Rdd> can be simply replaced with 

Rdd(t) for the first and second term of right side and the last term can be integrated with respect to R’, to 

get, 
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Calculated potential curve by Eq.(26) is shown in Fig.15, for the final stage of TSC condensation. 

Vtsc (keV) vs. R' at Rdd(t)=25 fm using
Vs(2,2)
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  Fig.15: Estimated approximate d-d trapping potential of 4D/TSC at Rdd(t)=25 fm.  



 

Potential depth (Vtsc-min)= -130.4 keV and mean kinetic energy of d-d pair 13.68 keV are 
obtained. This is very fast transient state with about 10-20 s of adiabatic time interval. 
However we can regard this state as an adiabatic state with 13.68 keV ground state energy 
with Vtsc (Rdd;R’) trapping potential, for that short time interval.  
We can calculate corresponding kinetic energy of electron in ‘dede’ system of TSC-min state, 

using semi-classical geometry model17) as shown in Fig.16.  

Mean Particle Kinetic Energies of the “dede” System of TSC

(e2/Re2)=(meve2/Re)=(2Eke/Re)

d-d axis
+d +d

Rdd

-e

-e

Electron torus

Rde

R
e

Re = Rdd/2

Eke = 1.44/Rdd : [keV] by R in pm

At Rdd=0.025 pm (25 fm)

Eke = 57.6 keV
Ekd-d= 13.68 keV

Vtsc-min = -130.4 keV

 

 Fig.16: Estimation of mean kinetic energy of “d-e-d-e” system of diminished 4D/TSC. Here the position of 

“-e” is for the center of quantum mechanical charge distribution (cloud) of electron. 

 
We obtained mean electron kinetic energy Eke = 57.6 keV of “bosonized” electron torus (see 
Fig.3 c)) for d-e-d-e system at Rdd = 25 fm that is at the final stage of TSC condensation 
motion. At the starting t =0 state, mean electron kinetic energy was 18 eV (16.2 eV in our 
previous study11) is underestimation). Despite of such high kinetic energy at the TSC-min 
state, electrons are trapped tightly with deep potential (-130.4 – 57.6 keV = -187.6 keV) in 
“d-e-d-e” system of a face of 4D/TSC system. We can draw similar “adiabatic” state for d-d 
distances of Rdd > 25 fm. Thus we can understand that more enhanced mean kinetic energy of 
electrons trapped in time-dependent TSC potential makes the effective electron wave length 
shorter to match the Heisenberg Uncertainty Principle (HUP), in the d-e-d-e system: this 
seems the essence of TSC condensation motion. The ultimate condensation is possible only 
under the double Platonic symmetry. Namely, we need always four deuterons in the 
condensing system. This commonly the reason why 4D/TSC can make super screening of 
mutual Coulomb barrier and condense ultimately into the strong interaction range of nuclear 



fusion (4D fusion is therefore predominant there). 
 Unfortunately, thus obtained trapping potentials and corresponding Gaussian wave 
functions can not be used for barrier factors (tunneling probabilities for fusion reaction) 
calculation, because the accuracies in small and large Rdd values are poor. Gaussian wave 
function is useful to estimate deviation from mean (expected) values, <Rdd>, Rgs and Egs, but 
not useful to interpolation to r0 position where nuclear strong interaction works. 
 To obtain more useful approximate potential for continuously varying Rdd(t) value, we have 
introduced the concept of Heavy Mass Cooper Pair e*(m,2) to form virtual dde*(m,2) molecule. 
If we can establish one-to-one relation between m and Rdd(t), we can replace all Vtsc (Rdd(t)) 
potentials with Vs(Rdd(t); m,2) potentials. First, we have made survey calculations for Vs(R; 
m,2) as a function of mass number (relative to electron mass) m, as results are shown in 
Table-1. In this table, we have eventually found tight empirical relations as, 

)2,(206.0)2,(0 mRmb gs=                                                          (27) 

)2,(/9000 0 mbm =                                                                (28) 

Here b0 and Rgs are in fm unit. Using Rgs = 805 fm for muonic-dd molecule, we obtain m = 54 
for munonic-dd molecule. So, Vs(Rdd; 54,2) potential can be used instead of Vs(Rdd;207,1) 
potential of dd-muonic molecule. Similarly, m= 200-500 range can correspond to Vtsc 
potentials in the final stage of TSC condensation. 
 
Table-1: Main parameters of HMEQPET potentials calculated by GWF2 Code; mean d-d kinetic energy is 

given as Egs – Vs-min.  

Molecule   b0 

 (pm) 

 Rmin 

 (pm) 

 Vs-min  

 (keV) 

 Vs-min – 

V(∞) 

 (keV) 

 Rgs  

 (pm) 

 Egs  

 (keV) 

D2   22  70 -0.03782 -0.0106  76.69 -0.03514 

 dde*(2,2)   4.5  19.3 -0.1804 -0.0716  21.82 -0.17027 

 dde*(5,2)   1.9   7.6 -0.4509 -0.1789  8.72 -0.43007 

dde*(10,2)   0.90   3.8 -0.9019 -0.3579  4.36 -0.86012 

dde*(20,2)   0.45   1.9 -1.8039 -0.7159  2.18 -1.7202 

dde*(50,2)   0.18   0.76 -4.5097 -1.7894  0.873 -4.3003 

dde*(100,2)   0.09   0.38 -9.0194 -3.5790  0.436 -8.5998 

dde*(200,2)   0.045   0.19 -18.039 -7.1590  0.218 -17.196 

dde*(500,2)   0.018   0.076 -45.097 -17.89  0.0873 -42.968 

dde*(1000,2)   0.009   0.038 -90.194 -35.79  0.0436 -85.858 

dde*(2000,2)   0.0045   0.019 -180.39 -71.59  0.0218 -171.406 

 



Using these HMEQPET potentials, we can approximately calculate barrier factors for 
time-dependent Rdd values, continuously. We can use there, real number (non integer) for m 
value, virtually. 
In our previous study of time-dependent EQPET analysis, we assumed three steps of 
adiabatic potentials7), which was difficulty in the method, but we can make smooth 
calculation of barrier factors continuously changing HMEQPET potentials, in this work. 
 
 
  
 
6. 4D FUSION RATES AND DISCUSSIONS 
Using HMEQPET potentials as a function of Rdd(t) with the results of TSC Langevin 

calculation, we can easily calculate barrier factors for d-d pair and 4d cluster. 
First we calculate Gamow integral, 
 

dREZmRVZm
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),(0

0

),;(218.0),( μ                                  (29) 

with Rdd in fm unit and, 

)(/1037.4 4 tRm dd×=                                                          (30) 

For the calculation of Gamow integral of steady dde* molecule, b0(m,Z) should be redefined as 
the lower crossing distance of potential on the level of Egs. Since Egs is negative value, we 
need to bias Vs potential in Eq.(29) with –Egs to have positive value in root operator. 
Approximate calculation can be however done by regarding b0(m,Z) = Rgs, instead of using the 
biased Vs. We applied this approximation in the present calculation of Gamow integrals. 
Barrier factor is calculated by, 
 

)),(exp(),( ZmnZmP ddnd Γ−=                                                 (31) 

 
Using Fermi’s golden rule8), fusion rate is obtained by, 
 

WrPrPW ndndnd )(1004.3)(2
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21
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h
λ                                      (32) 

 

Here <W> value is in MeV unit. 

Calculated barrier factors for typical Rdd values are shown in Table-2. 

In Table-2, approximate barrier factors are given according to known D2-molecule and muonic dd 



molecule, and also for EQPET dde*(2,2) molecule, respectively. 

The imaginary part of optical potential <W> for effective interaction, namely fusion, is estimated by the 

empirical rule for PEF (pion exchange force number) values8), and given in Table-3. Fusion rates are 

shown in Table-4. Here we used the following relations between astrophysical S-value Snd, T-matrix for 

the effective interaction Hamiltonian of nuclear fusion Tn and pion-exchange number PEF, in <W> 

estimation8). Practical function of PEF based on the one pion exchange potential is given in our previous 

paper17).  

102 )(PEFTS nnd ∝∝                                                          (33) 

5)(PEFWTn ∝=                                                           (34) 

And we used known S-values at Ed=0 and <W> values for DD16) and DT reactions, as reference values. 

 

Table-2: Calculated barrier factors for 2d-pair and 4d-cluster under TSC condensation. Time runs from bottom to top with 

one-to-one relation between time and Rdd.  

Rdd=Rgs (pm)  P2d ; 2D Barrier Factor P4d; 4D Barrier Factor 

0.0206  (TSC-min) 

0.0412 

0.103 

0.206 

0.412 

0.805  (μdd): muonic dd 

1.03 

2.06 

4.12 

10.3 

21.8  (dde*(2,2) 

74.1  (D2 molecule) 

4.44E-2 

1.06E-2 

1.43E-3 

3.35E-5 

9.40E-7 

1.00E-9 

9.69E-11 

6.89E-15 

9.38E-21 

2.16E-32 

1.30E-46 

1.00E-85 

1.98E-3 

1.12E-4 

2.05E-6 

1.12E-9 

2.16E-13 

1.00E-18 

9.40E-21 

4.75E-29 

8.79E-41 

4.67E-64 

1.69E-92 

1.00E-170 

 

 

Table-3: estimation of <W> values 

Cluster      <W>    (MeV) 

        DD 

        DT 

        3D 

        4D 

     0.008 

     0.115 

     1.93 

    62.0 

 



 

Table-4: Fusion rates calculated by Fermi’s golden rule ( using Eq.(32)) 

  
Molecule  Rdd=Rgs 

(pm) 

Pnd ; B-Factor <W> (MeV) λ2d (f/s)   λ4d (f/s) 

D2 

dde*(2,2) 

μdd 

4D/TSC-min 

 74.1 

 21.8 

  0.805 

  0.021 

 1.0E-85 

 1.3E-46 

 1.0E-9 

 1.98E-3 

 0.008 

 0.008 

 0.008 

62 

 2.4E-66 

 3.16E-27 

 2.4E+10 

  

 

 

 

3.7E+20 

 
Calculated fusion rate for dd-muon molecule, 2.4x1010 f/s/pair well corresponds to fusion rate 
of dt-muon by Hale-Talley14), (1.08-1.29)x1012 f/s/pair, considering the dt fusion cross section 
is 200 times of dd fusion in low energy region. Value for D2 molecule looks also appropriate. 
 Calculated 4D fusion rate 3.7x1020 f/s/cluster is very large, however this is value for virtual 
steady molecule state of 4D/TSC-min. In reality, 4D/TSC-min state can exist only for about 
2x10-20 s in the final stage of condensation. Now we need to derive formulas for fusion yield 
for transient 4D/TSC condensation. 
 Microscopic fusion yield η4d per 4D/TSC is defined as, using condensation time tc (1.4007 fs), 
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We obtain that η4d is very close to 1.0. As a consequence, we get the simplest result: 

 

0.14 ≅dη                                                                     (39) 

 

Therefore macroscopic 4D fusion yield becomes equal to 4D/TSC generation rate in condensed matter 

(e.g., in PdDx under excitation). Defining the TSC generation rate by Qtsc, we define 4D fusion yield Y4d 

as,  

 

dtscd QY 44 η=                                                                  (40) 

 

Practically,                                                           (41) tscd QY ≈4



4D fusion and its product are: 

 

MeVHeHeBeDDDD 6.4744*8 ++→→+++                                    (42) 
 

Finally we have reached at the simplest conclusion that 4D fusion Yield Y4d (f/s/cc) is equal to 4D/TSC 

generation rate Qtsc (tsc/s/cc) in condensed matter. Now formulation and estimation of Qtsc becomes 

essentially important for further theoretical elaboration and guiding experiments. 

 

 In the case of muonic-dd fusion rate of 2.4x1010 (f/s) with 2x10-6 s muon life time, almost 100% dd fusion 

takes place in 200 ps (2x10-10 s). So that, muon goes out after one dd-fusion, will be trapped in another 

muonic-dd molecule and will make plural chain reactions within muon life time, as well known.  

Since 4d fusion yield is 100% for 4D/TSC-min state, we have no 2d fusion rate in the final stage. In the 

present model calculation, 2D fusion may take place by dde*(2,2) state just after Cooper pair formation. 

Fusion yield by dde*(2,2) is estimated in analogous way. 

)exp(1 )2,2()2,2(22 τλη dd −−=                                                    (43)                  

)2,2()2,2(22 τλη dd ≈                                                             (44) 

Here τ (2,2) is the life time of dde*(2,2). If we may assume very long life time as 104 s (as asserted by X. Z. 

Li16)), we obtain 

23
2 101.3 −×=dη  (f/pair).  Even if assuming maximum level of dde*(2,2), or Cooper pair, generation 

rate of 1022 (dde*/s/cc), we get 2D fusion yield of Y2d = 0.3 (f/s/cc), so called Jones’ level. 

However, we may have small probability that 4D/TSC under condensation may deviate far from expected 

position <Rdd(t)> and Platonic symmetry would be broken to split into two diminished dde*(m,2) 

molecules which may cause higher 2D fusion rates. To know quantitative answer to this question, we 

further need to develop a Monte-Carlo Langevin code to treat random f(t) source for TSC condensation 

motion. This is one of our future works. Another minor neutron production may come from break up of 
8Be* with 47.6 MeV excited state by 4D fusion going out to minor branch of n + 7Be (Q = - 18.9 MeV).  

  

 

7. CONCLUSIONS 

1) We have introduced a non-linear Langevin equation for the study of molecular dynamics motion of 

TSC condensation. Developed calculations were very successful to estimate condensation time, 

barrier factors and fusion rates. 

2) Molecular dynamics of 4D/TSC condensation was numerically solved by the Verlet’s time step 

method. 



3) Condensation time of 4D/TSC was very short as 1.4 fs, compared with our primitive analysis11). 

4) 4D fusion happens in about 2x10-20 s in the last stage of condensation with 100 % probability. 

5) 4D fusion yield and 4He production yield becomes equal to 4D/TSC generation rate in condensed 

matter.  

6) 2D fusion rate is negligibly small. 

7) The concept of heavy mass Cooper pair and HMEQPET potentials are useful tool to quantify 

time-dependent d-d trapping potential under condensation of TSC.  

8) We need elaboration for developing Monte-Carlo Langevin code, quantitative models for 4D/TSC or 

4H/TSC formation in circumstances in/on condensed matter, TSC + host metal interaction for 

transmutation reactions, etc. 

9) We may conclude that the double Platonic symmetry of 4D (or 4H)/TSC can realize a) 

super-screening of mutual d-d Coulomb repulsion, b) predominant 4D fusion with 4He ash and c) 

apparently hard radiation-less nuclear fusion, in the dynamic clustering process of deuterons in 

condensed matter. 
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[Appendix] 
Shielded Coulomb potential, equivalently d-d trapping potential, for dde*(m,Z) EQPET 

molecule is given in our previous works4, 8) as, 
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The derivative of the potential becomes, with Rdd in pm unit and energy in keV unit. 
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Here R and r are used in [pm] unit, energy in [keV] unit and time in [fs] unit.       
 
 


