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In this paper we show how relativistic tensor dynamics
and relativistic electrodynamics can be formulated in a bi-
quaternion tensor language. The treatment is restricted
to mathematical physics, known facts as the Lorentz Force
Law and the Lagrange Equation are presented in a rela-
tively new formalism. The goal is to fuse anti-symmetric
tensor dynamics, as used for example in relativistic electro-
dynamics, and symmetric tensor dynamics, as used for ex-
ample in introductions to general relativity, into one single

formalism: a specific kind of biquaternion tensor calculus.
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Introduction

We start with a quote. One can say that space-time model
and kinematics of the Quaternionic Relativity are nowadays stud-
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ied in enough details and can be used as an effective mathemati-
cal tool for calculation of many relativistic effects. But respective
relativistic dynamic has not been yet formulated, there are no
quaternionic field theory; Q-gravitation, electromagnetism, weak
and strong interactions are still remote projects. However, there
s a hope that it is only beginning of a long way, and the theory
will mature. (Yefremov 2005)

We hope that the content of this paper will contribute to the
project described by Yegremov.

Quaternions can be represented by the basis (1,1, J, K). This

basis has the properties II = JJ = KK = —1; 11 = 1;
IK=Kl=Kfor LJK;IJ=-JI=K; JK=-KJ=1I
KI = —IK = J. A quaternion number in its summation repre-

sentation is given by A = agl 4+ a1 4+ asJ + a3K, in which the
a, are real numbers . Biquaternions or complex quaternions in
their summation representation are given by

C=A+iB =
(ag +1ibo)1 + (ag +iby)I + (ag +ib2)J + (a3 +ib3) K =
aol + arl + aJ + azK + ibp1 + iy I + ibeJ + 13K, (1)

in which the ¢, = a, + b, are complex numbers and the a, and
b, are real numbers. The complex conjugate of a biquaternion

C is given by C = A—iB. The quaternion conjugate of a
biquaternion is given by
Cl=A'+iB' =
(ap + 1bo)1 — (ag + 1b))I — (ag + ibg)J — (a3 + ib3) K. (2)
In this paper we only use the complex conjugate of biquater-
nions.
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Biquaternions or complex quaternions in their vector repre-
sentation are given by

Co].
. Cll
Cu - CQJ ’ (3)
CgK
or by
CcH = [Co]_, Cl:[, CQJ, CgK] (4)

We apply this to the space-time four vector of relativistic
biquaternion 4-space R, as

ict1 irgl
. TlI . Tll

RM - TQJ - TQJ ' (5)
7"3K 7“3K

The space-time distance s can be defined as fi“R“, or
RMRM = [—ictl, rI, ryd, 5K [ict1, rI, r0d 75K, (6)
giving
R'RF = 221 — 21 — 121 — 21 = (P2 — 2 — 12 — D)1 (7)

So we get RMR* = s1 with the usual

s=ct—ri—ry—ri =10 -1 —15 — 13 (8)
providing us with a (4, —, —, —) signature.
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Adding the dynamic vectors

The basic definitions we use are quite common in the usual
formulations of relativistic dynamics. We start with an observer
who has a given three vector velocity as v, a rest mass as mg and
an inertial mass m; = ymg with v = (1/1 —v2/c?)~!. We use
the Latin suffixes as abbreviations for words, not for numbers.
So m,; stands for inertial mass and U, for potential energy. The
Greek suffixes are used as indicating a summation over the num-
bers 0, 1, 2 and 3. So P, stands for a momentum four-vector
with components py = %Ui, p1, pe and p3. The momentum
three-vector is written as p and has components py, ps and p3.

We define the coordinate velocity four vector as

icl ivgl

. d . ’Ull . 1)1:[
V== oy | = | w1 | (9)

U3K UgK

The proper velocity four vector on the other hand will be defined
using the proper time ty, with dt = vy, as

iycl
_d _d B | yul
UM = d—tORM = l_dtR“ = ’)/V'u = ’)/UZJ (10)
v
yusK
The momentum four vector will be
PH = miV# = moUM. (11)
We further define the rest mass density as
dmo
= — 12
Po d‘/o’ ( )
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so with ]
av = —dVj (13)
Y
and the inertial mass density as
dmi
; = 14
i = (14)
we get
dm;  dymyg 9
= LY, Y po (15)
The momentum density four vector will be defined as
gl gl
G, = = , 16
g g2J g2J (16)
93K gsK

in which we used the inertial energy density u; = p;c?. For this
momentum density four vector we have the variations

d dml Toper
G = 7P = 7 Vi = piVie = VpoViu = 100Uy = G
(17)
The four vector partial derivative d,, will be defined as
—i19,1
Vi1 0
9, = = —. 18
12 VZJ aR# ( )
V3K
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The electrodynamic potential four vector will be defined as

izgl iAol

AT || AT

A, = AT | = g | (19)
AsK AsK

The electric four current density will be given by

icpel iJgl
_ Ji1 - S|
JM — JQJ - JQJ - peV/u (20)
J3K J3K

with p. as the electric charge density.

Adding the dynamic vector products, scalars
The dynamic Lagrangian density £ can be defined as
L=-V'G =—(u;—v-g)1l=—ul (21)

and the accompanying Lagrangian L as
~ 1
L=-V"P"= —<Ui—V'p)1:——U01, (22)
Y

with ug as the rest system inertial energy density and U, as the
rest system inertial energy. The latter is the usual Lagrangian
of a particle moving freely in empty space.

The Lagrangian density of a massless electric charge density
current in an electrodynamic potential field can be defined as

L=—J'A" = —(pep — T - A1, (23)
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On the basis of the Lagrangian density we can define a four
force density as

oL
f,u = aR_ - 3HE == —8MU0. (24)
w

In the special case of a static electric force field, and without the
densities, the field energy is Uy = q¢o and the relativistic force
reduces to the Coulomb Force

F= —VU() = —quzSo. (25)
Using £ = —V*GY this four force density can be written as
fu=—0,V"G". (26)

We can define the absolute time derivative % of a continuous,
perfect fluid like, space/field quantity through

- d
SVRt = VROt = vV 491 = 1. (27)

Thus we can define the mechanic four force density as

d vav V(v

using the fact that biquaternion multiplication is associative.

Adding the dynamic vector products, tensors
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1 v 3 14 —

N The stress energy density tensor 7%, can be given as 7", =
V¥G ), and gives

igo]_
” . I
T n = [—wol,le,vgJ,ng] 521'] =
93K
vogol ivigol  ivpged  ivzgoK
—ivggil  —vigil —v.g1 K v3giJ
—ivggad 11K —v3g21  —v3g0l
—ivggsK  —vigsJ  wvagsl  —wsgsl

Its trace is T" = V'G¥ = —L.

In relativistic dynamics we have a usual force density defi-
nition through the four derivative of the stress energy density
tensor

T, = —f, (30)

or

VG, =1, (31)

We want to find out if these equations still hold in our biquater-
nion version of the four vectors, tensors and their products.
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We calculate the left hand side and get for "1, = 9"V G :

vogol ivigol  ivaged  ivzgoK |

i —ivogil  —vig1l -1 K v3gid
—=0,1, V411, VoJ, V3K ]

c 1h e s —ivgged 11K —v2g21  —v3gol

—ivggs K —vigsd  vagzl  —w3gsl |

—i%at’l}ogo]. - iVlvlgol - iVQUQ_g()]_ - iV3Ugg()1 i
—L0wogi I — Vivigi1 — VavegiI — Vausg 1
—%@?JOQQJ = Viu1g2J — Vavaged — V3v390d

—%5{0093K — Viv1g3K — Vo gs K — Viu393K - |

i(%atﬂogo + Viv1go + Vavago + Vsuszgo)1
(%&t?}ogl + Vivigr + Vavagy + Vauzgr)I (32)
(%atvog2 + V10192 + Vavage + V3vsg2)Jd
(20vw0gs + Viv1gs + Vavags + Vivsgs) K
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Using the chain rule this leads to

i(L00rgo + v1Vigo + v2Vago + v3V390)1
(2v00ig1 + v1Vig1 + 12Vag1 + v3V301)1
(2000192 + v1V1gs + 12V2gs + v3V392)J
(2000193 + v1V193 + v2Vag3 + v3V303) K

auTz/M —

i(2(dywo)go + (V1v1)go + (Vavz)go + (V3v3)g0)1 |
(2(8wogr) + (Vivr)g1 + (Vavz)g1 + (Vsus)gr)1
(%(3{0092) + (Viv1)g2 + (Vave) g2 + (V3v3)g2)J
(%(&wogs) + (Viv1)gs + (Vava)gs + (Vivs)g3) K |
[ igol |
:—(lvﬁ%—vv + 13V + 13V3) ol
S0 VI Vo usVa) | g
| 9K ]
[ igol |
— (L0 + Vivr + Vars + V) | 1L
c tv0 1V1 202 3V3 ng
| 9K

= (VY0")G, 4 (8"V")G(33)

This can be abbreviated to

& (Vra,) = (VVo")G, + (0°V")G, (34)
So N B
1", = (V"0")G, + (0"V")G,. (35)
We have V¥9” = —% and if we assume the bare particle velocity
continuity equation VY = 0, then we get
12 12 d
0 TMI_EG“:_JCF" (36)
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Electrodynamic vector products

If we apply this to the case in which we have a purely elec-
tromagnetic four momentum density G,, = p.A,, then we have

L=-V'G = -V'pA = —J'A, (37)
and N B
17, =V"G,=J"A,. (38)
The relativistic force equation
T, = (V'0")G, + (9"V")G,. (39)

can be given its electrodynamic expression as
O, = (J'0") A, + (9" J")A,. (40)

If the charge density current continuity equation 9’ J" =0 can
be applied, then this reduces to

T, = (J'O")A, = (J'O")A, = J"(0"A,). (41)

The electrodynamic force field tensor B, is given by

B, =0"A,. (42)
In detail this reads
izg1
y .1 Al
B p 128,51,V11, VQJ,VgK AQJ =
AsK

—5001  iiVigl  ilV,y9d  ilVi9K

i20,AI —Vi41 -V, ALK VA

20,4, V1A K  —VyA4,1 —V34.1

i%atAgK —V1A3J VQAgI —V3A31
(©)2008 E.P.J. de Haas
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To see that this tensor leads to the usual EM force field biquater-
nion, we have to rearrange the tensor terms according to their

biquaternionic affiliation, so arrange them according to the basis
(1,1,J,K). This results in

(—5010 — V1A — VaAy — V3A3)1
(V2A3 — V3A2 + 1%V1¢ + 1%815141)1
( )J

Vads — ViAs +i-V,0 + i10,4, (44)
(V1 Ay — Vad, +1EV50 +i10,45)K
This equals
o AY1 Fyl
| B-itEgr || AI
b= B—ifpyg | = | B3 | (45)
(Bs —ilE)K K

For this biquaternion to be the exact match with the EM force
field, one has to add the Lorenz gauge condition Fy = 9V A¥ = 0.
The operation of rearranging the tensor terms according to their
biquaternion affiliation is external to the mathematical physics
of this paper. We try to develop a biquaternion version of rela-
tivistic tensordynamics. The above operation destroys the ten-
sor arrangement of the terms involved. It is alien to the system
we try to develop in this context. It may be a useful operation
in others areas though, for example in quantum physics.
The electrodynamic force field tensor B,” can also be given
by B
B,” =0,A". (46)

This leads to the same EM force field biquaternion.
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The combination of Eq.(41) and Eq.(42) leads to

T, = J'B,, (47)

which is valid if charge is conserved so if o J" = 0.
We can write Eq.(41) also as

d

A
Pt

T, = (J'O")A, = p(V'")A, = L (48)

The two EM force expression we gave in this and the previous
sections based on f, = —0"T", and f, = 9,L do not result in the
well known Lorentz Force. But we can establish a relationship
between these force expressions and the Lorentz Force.

The Lorentz Force Law

The Lorentz Force Law in its density form is given by the
expression

fu= Jy(gyAu) - (au;{y)t]ya (49)
or
fu=J"B", — (9,A")J". (50)
So if charge is conserved we also have

fu=0"T", — (0,A").J" (51)

as an equivalent. If we examen this last part (9,A")J” in more
detail, an interesting relation arises. We begin with the equation

—0,L = 9, JV A (52)
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Now clearly we have JVAY = AV Y = upl as a Lorentz invariant

scalar.

Together with the chain rule this leads to

BT A” = (0,J") A + (8,A")J". (53)

This equation is crucial for what is to come next, the connection
of a Lagrange Equation to the Lorentz Force Law. So we have
to prove it in detail, provide an exact proof, specially because
biquaternion multiplication in general is non-commutative. We
start the proof with 9, A":

In the

—ilo1
Vll
VaJ
Vs;K
—19, A1 —i20, AL —il9 A —il0,AsK
—iVi4l -ViAl VIAK  —ViA43d
—iVodpd VoA K —V3A1 VoAsl
—1V3AOK V3A1J —V3AQI —V3A31

8, A" = [—idg1, AL, A,J, AsK] =

(54)

next step we calculate (8MKV)J” and use the fact that
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(V3A1)J2 = JQ(V3A1>2

(0,A)J" =
19,401 —ilg AT —il9 A0 —ild, AsK
VA —ViAl ViAK —ViAyd
—iVoAgd —VoA K —Vodyl VoAl
—IV3AOK VgAlJ _V3AQI —V3A31
iJo1, 1L, JoJd, J5K] =
(—ilJoAp + 1L J10, A, + i1 T8, As + i1 J30,45)1
(JoV1Ag — JiV1 A, — JyV1 Ay — J3V1A)1
(JoVady — J1Va2Ay — JoaVady — J5V2A35)T
(J()Vng — J1V3A1 — JQVgAQ — J3V3A3)K

15

(55)

Now clearly (8MEV)J” and (8uj”)A” behave identical, only

J and A have changed places, so
(9,J7)A" =
(—i%AoﬁtJo + i%AlatJl + i%AgatJQ + i%Ag@th,)l
(AoViJy — A1V J1 — AV 1y — A3V J5)]

(AgVado — A1 Vo) — AsVady — A3V J3)J
(A()ngo — A1V3J1 — AQV?,JQ — A3V3J3)K

(©)2008 E.P.J. de Haas
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If we add them and use the inverse of the chain rule we get

(0,AY)JY + (8,J") A =

—iL(DJoAg — OrTy Ay — Dy Ja Ay — Dy J5As)1
(V1JOA0 — V1J1A1 — V1J2A2 — V1J3A3)I .
(VadoAo — VaJi Ay — Voo Ay — VaJsA5)T | —

(Vadodo — VaJi A — Vo Ay — Vs A3)K
—il1
Vil
VQJ
V,K

(JOAO — J1A; — Jo Ay — J3A3> = 8u(jVAV) <57)

Thus we have given the exact proof of the statement

BT A” = (9,J") A + (8,A").J". (58)

So we get
—0,L = 9, JVAY = (9,J")A” + (9,A").J". (59)
We now have two force equations, f}f = 0,L = —0,uy and
ff=-0"T", = 4£G,. We combine them into a force equation

that representing the difference of these two forces:
fo=—f1+fr=0"T",+0.L. (60)
For the purely electromagnetic case this can be written as
fo=08"J"A, —8,J" A (61)
and leads to

fu= (JVO")A, + (0" J)A, — (8,")A” — (9,A")J".  (62)
(©)2008 E.P.J. de Haas
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If we have 9"J” = 01 and QLjV = 0 then this general force
equation reduces to the Lorentz Force Law

fu=(J"O")A, — (8,A")J". (63)
This of course also happens if oI = 8,“7”, so if the RHS of
this equation has zero non-diagonal terms.

The Lagrangian Equation

If the difference between fg and f/f is zero, we get the inter-
esting equation

—0"T", = 9,L. (64)

For the situation where O"V* = 0 we already proven the
statement

124 v d
o'rr, = —aG’#, (65)
so we get
d
SGu=0.L. (66)
which equals
d oL
EGH = _8Ru' (67)
We will prove that
oVrGY AL
G,=— = 68
a ov, ov,’ (68)
see Appendix A for the proof and its limitations.
Combined with the forgoing equation, this leads us to
d oL oL
(69)

dt oV, OR,
(©)2008 E.P.J. de Haas
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as equivalent to
—0"T", = 0,L. (70)

A canonical Lagrangian density

If we choose a canonical Lagrangian density as
L=-V'G+J'A =v-g—J -A—u+ po, (71)

and an accompanying stress energy density tensor
T, =V'G, — J'A,, (72)

then our force equation E = f/f can be split in an inertial LHS

and an EM RHS

(—f0 + [ )inertiar = —(— [ + [ )En- (73)
For situations were (f)inertiat = —Oputio = 0 this results in
finertial _ pLorentz (74)
as p N -
%GM = JY(0"A,) — (0,A").J". (75)

Maxwell’s inhomogeneous equations

We end with the formulation of the two inhomogeneous equa-
tions of the set of four Maxwell Equations, as they can be ex-
pressed in our terminology. They read

A, — 0,0"A” = pgJ,. (76)
(©)2008 E.P.J. de Haas
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It can be written as

1 d?
(V7 + 5 3) A = 000 =V - A) = o, (TT)

so as the difference between a wave like part and the divergence
of the Lorenz gauge part.

Conclusions

We have presented a specific kind of biquaternion relativistic
tensor dynamics. We formulated the general equation

§'T", +9,L = 0. (78)

The stress energy density tensor of a massive moving charged
particle in a potential field was formulated as 7%, = V"G, +
j”A,, with an accompanying Lagrangian density £ as its trace
L = T". Under curtain continuity conditions for the four cur-
rent and the four velocity, this leads to the Lorentz Force Law
and to the usual equations of relativistic tensor dynamics. One
advantage of our specific kind of biquaternion formalism is that
it is very akin to the usual relativistic space-time language.
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Appendix A Proof

We want to proof that, under curtain conditions, we have

oL 0~
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The chain rule as we have used and shown before gives a first
hunch. The chain rule leads us to
0 ~ 0 = 0 ~
—V'G" = (—=V")G" + (=—=G")V". 80
v, G, Ve + G (80)

As before, we cannot assume this, because it uses commutativity,

so we have to prove it. _
We start the proof with %V”:

—iz%1
0 ~ s |
va = ﬁ [—ivel, 11, v, v3sK] =
% %vg
Ovs

—.8%)'001 _1%?; vl :9(% voJ —i%ng

—.I@U()I —@’Ull aTlal)QK _8_111U3J (81)
—I%UOJ %le 6—1)21121 5o U3l
—ia—US’UQK 8_1)3U1J _%UQI —871)31

0

Now we use the fact that we have an orthogonal basis, so 5>~v, =
I

Ot

0 ~
V=
v,

—11 0I 0J OK

o —-11 0K 0J (82)

0J OK -—-11 oI
0K 0J 0 -11
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Then we multiply G with the result, giving

a ~l/ 14
(G716 =
—11 0I 0J OK
oI -11 OK 0J
0J OK -—-11 0I

0K 0J o0 -11

ligol, 11, g2J, g3 K] =

-l _
gt | T G,. (83)
—g3K
The result of this part is
—(iVV)GV =G (84)
oV, o
For the second part,
0 ~
—(=G"V"” 85
(G 0" (%)

we have two options. The first is the easiest, assuming particle
velocity and particle momentum to be independent properties,
which makes this part zero and gives us the end result

oL 0~ 0
o = v VG = Ve = G (86)

In the case that £ = J” A" this assumption is allowed.
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The second option is that particle velocity and particle mo-
mentum are mutually dependent through the relation G¥ =
piV"V, with p; as the inertial mass density. In that case we have
to go back to the original equation. If we assume a velocity
independent mass density this gives

oL 0 -~ 0 -
9 e = L () =
av, ~ v, o, V)
9
v (v — v} —v3 —v3) = 2G,. (87)

The last situation is assumed in relativistic gravity, where the
stress energy tensor is given by p;U,U". In that situation could
be tempted to choose the Lagrangian as £ = %piU YUY in order
to preserve the outcome

oL
5y = G (88)

This is done for example by Synge in his book on relativity
(Synge, 1965, page 394).
But that is outside our scope. So we have to restrict the use

o oL 0
—— = V'G" =G, 89
ov, ov, (89)
to the situations in which V,, and G, are independent of each
other.
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