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Abstract

We obtained a new solution of Schrödinger equation by the method of Eu-
clidean approach (Wick rotation). This is a wave motion which is fluctuating.

1. Introduction

In the Feynman’s path integral, the solution of the Schrödinger equation is
expressed as

ψ (x, t) =
∫
Dx exp

[
i

h̄

∫ t

t0

1
2
mv2dt′

] [
exp

(
− i

h̄

∫ t

t0

V (x, t′) dt′
)
ψ (x0, t0)

]
.

And∫
Dx exp

[
i

h̄

∫
1
2
mv2dt

]
=
∫
Dx exp

[
− 1
h̄

∫
1
2
m

(dx)2

d (it)

]
corresponds to the normal distribution after replacing it → t , so wave motion
function can be written as

ψ (x, t) = E

[
exp

(
− i

h̄

∫ t

t0

V (x, t′) dt′
)
ψ (x0, t0)

]
.

E [· · ·] means the expected value is taken. This is an expression of so-called
Feynman-Kac formula. The purpose of our study is to discover the correct
wave motion function that had been concealed by the operation of taking the
expected value.

2. Discussion

We try to obtain a new solution of Schrödinger equation

ih̄
∂ψ (x, t)

∂t
= − h̄2

2m
∂2ψ (x, t)
∂x2

+ V (x, t)ψ (x, t) (1)

by the technique of the Euclidean approach (Wick rotation). The Euclidean
approach is one of the techniques of the quantum electrodynamics to come and
go in the quantum mechanics and the statistical mechanics by doing a it → t
replacement.
(1) becomes

−∂ψ (x, t)
∂t

+
h̄

2m
∂2ψ (x, t)
∂x2

=
V (x, t)
h̄

ψ (x, t) (2)

after using the Euclidean approach (it→ t) and dividing both sides by h̄.
The normal distribution∫
Dx exp

[
− 1
h̄

∫
1
2
m

(dx)2

dt

]
means that x follows the stochastic process of
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dx =

√
h̄

m
dW ∗ (t) (Refer to Appendix A) (3).

Here,
dW ∗ (t) =

√
−dtξ (dt < 0) · · ·Standard Brownian motion (conjugate Wiener

process)
ξ · · ·Standard regular random variable.
(By the replacement of it → τ , path of integration t is converted into imagi-
nary number time like [t1, t2] → [τ1/i, τ2/i] → [−iτ1,−iτ2]. On the other hand,
because real time τ is τ1− τ2 > 0, the direction of time increasing becomes con-
trary to the direction of integration (dτ = τ2 − τ1 < 0). In a word, it becomes
dt→ −idτ for it→ τ .)
If Ito’s lemma (Refer to Appendix B) is used, a function ψ (x, t) that has vari-
able x and t follows the stochastic process of

dψ (x, t) =

∂ψ (x, t)
∂t

− 1
2
∂2ψ (x, t)
∂x2

{√
h̄

m

}2
 dt+

∂ψ (x, t)
∂x

√
h̄

m
dW ∗ (t) (4).

If (2) is substituted for (4), it becomes

dψ (x, t) = −V (x, t)
h̄

ψ (x, t) dt+
∂ψ (x, t)
∂x

√
h̄

m
dW ∗ (t) (5).

This is Ornstein-Uhlenbeck process. So the solution is obtained as follows1.

ψ (x, t) = exp
(
− 1
h̄

∫ t

t0

V (x, t′) dt′
)

[ ψ (x0, t0)

+
∫ t

t0

exp
(

1
h̄

∫ u

t0

V (x, t′) dt′
)
∂ψ (x, u)

∂x

√
h̄

m
dW ∗ (u) ]

or

ψ (x, t) = exp
(
− 1
h̄

∫ t

t0

V (x, t′) dt′
)
ψ (x0, t0)

+
∫ t

t0

exp
(
− 1
h̄

∫ t

u

V (x, t′) dt′
)
∂ψ (x, u)

∂x

√
h̄

m
dW ∗ (u) (6).

Clause 2 of the right side shows fluctuation. Then we can obtain a new solu-
tion of Schrödinger equation (fluctuating wave function) by reverse Euclidean
approach (t→ it).

ψ (x, t) = exp
(
− i

h̄

∫ t

t0

V (x, t′) dt′
)

[ ψ (x0, t0)

+
∫ t

t0

exp
(
i

h̄

∫ u

t0

V (x, t′) dt′
)
∂ψ (x, u)

∂x

√
h̄

m

√
−iduξ ]

= exp
(
− i

h̄

∫ t

t0

V (x, t′) dt′
)

[ ψ (x0, t0)

+ exp
(
−π

4
i
)∫ t

t0

exp
(
i

h̄

∫ u

t0

V (x, t′) dt′
)
∂ψ (x, u)

∂x

√
h̄

m

√
duξ ]

or

ψ (x, t) = exp
(
− i

h̄

∫ t

t0

V (x, t′) dt′
)
ψ (x0, t0)
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+exp
(
−π

4
i
)∫ t

t0

exp
(
− i

h̄

∫ t

u

V (x, t′) dt′
)
∂ψ (x, u)

∂x

√
h̄

m
dW (u) (7).

This is the correct expression of a fluctuating wave motion. Clause 1 shows
the appearance that the principal ingredient of the wave develops at time by
exponential with potential in the shoulder. Only this clause 1 is considered in
a present quantum theory. The effect of fluctuation is added by clause 2.

We will confirm the fluctuation disappears from the expression when the ex-
pected value of this new solution (fluctuating solution) of the Schrödinger equa-
tion is taken.
After taking expected value of the right side of (6) by∫
Dx exp

[
− 1
h̄

∫
1
2
m

(dx)2

dt

]
,

(6) becomes

ψ (x, t) =
∫
Dx exp

[
− 1
h̄

∫
1
2
mv2dt

] [
exp

(
− 1
h̄

∫ t

t0

V (x, t′) dt′
)
ψ (x0, t0)

]
(8)

because clause 2 of the right side of (6) is 0 by Ito’s integral.
It is understood that clause 2 of (6) disappears and the fluctuation has disap-
peared on the expression. And replace t→ it in (8), then (8) becomes

ψ (x, t) =
∫
Dx exp

[
i

h̄

∫
1
2
mv2dt

] [
exp

(
− i

h̄

∫ t

t0

V (x, t′) dt′
)
ψ (x0, t0)

]
(9).

It is corresponding to Feynman’s path integral formula (Lagrangian Path Inte-
grals).
In Hamiltonian Path Integrals

ψ (x, t) =
∫
DxDpx exp

(
i

h̄

∫ [
pxẋ−

p2
x

2m
− V (x, t)

]
dt

)
ψ (x0, t0)

=
∫
DxDpx exp

(
i

h̄

∫ [
− 1

2m

(
px −m

dx

dt

)2

+
1
2
m

(
dx

dt

)2

− V (x, t)

]
dt

)
ψ (x0, t0)

, if the Gauss integration concerning the momentum is executed, it becomes La-
grangian Path Integrals. When a kinetic energy paragraph of Hamiltonian Path
Integrals∫
Dpx exp

(
i

h̄

∫ [
− 1

2m

(
px −m

dx

dt

)2
]
dt

)
is compared with the normal distribution function, it is meant that the momen-
tum fluctuates like

dpx
∼=
√
h̄m

dt
.

(3) means coordinates fluctuates like

dx ∼=
√
h̄

m
dt.

So, It becomes
∆x∆px

∼= h̄
from this two. It is a so-called uncertainty principle.

3. The image of fluctuating wave function
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If (8) is differentiated by x , it becomes
∂ψ (x, t)
∂x

=
{
− 1
h̄

V (x, t) dt
dx

}
ψ (x, t) (10).

So after (10) is substituted for (5), it becomes

dψ (x, t) = −V (x, t)
h̄

ψ (x, t) dt+
{
− 1
h̄

V (x, t) dt
dx

}
ψ (x, t)

√
h̄

m
dW ∗ (t) (11).

If both sides is divided by ψ (x, t) , it becomes
dψ (x, t)
ψ (x, t)

= −V (x, t)
h̄

dt+
{
− 1
h̄

V (x, t) dt
dx

}√
h̄

m
dW ∗ (t) (12).

dψ (x, t)
ψ (x, t)

= d log [ψ (x, t)] = log [ψ (x, t)]−log [ψ (x (t− dt) , t− dt)] = log
ψ (x, t)

ψ (x (t− dt) , t− dt)
, So (12) becomes

log
ψ (x, t)

ψ (x (t− dt) , t− dt)
= −V (x, t)

h̄
dt+

{
− 1
h̄

V (x, t) dt
dx

}√
h̄

m
dW ∗ (t) (13).

Therefore, ψ (x, t) becomes

ψ (x, t) = exp

(
− 1
h̄

[
V (x, t) dt+

{
V (x, t) dt

dx

}√
h̄

m
dW ∗ (t)

])
ψ (x (t− dt) , t− dt)

= exp

(
− 1
h̄
V (x, t)

[
dt+

dt

dx

√
h̄

m
dW ∗ (t)

])
ψ (x (t− dt) , t− dt)

= exp

(
− 1
h̄
V (x, t)

[
dt+

1
vx

√
h̄

m
dW ∗ (t)

])
ψ (x (t− dt) , t− dt) (14).

A Brownian motion paragraph appears to the shoulder of exponential, and, as
a result, the wave function fluctuates.

Considering that the potential is a function of also y like V (x) = V (x, y) ,
the discussion when the electron is turning to the vertical direction (y) against
the incidence direction (x) receiving power is as follows.

ψ (x, t) = exp
(

1
h̄
py · dy

)
ψ (x (t− dt) , t− dt) (15).

py = −∂V (x, y)
∂y

[
dt+

1
vx

√
h̄

m
dW ∗ (t)

]
(16).

It is understood that the momentum in the direction of y fluctuates by the
Brownian motion.

When we replace t with it in (14), it becomes

ψ (x, t) = exp

(
− i

h̄
V (x, t)

[
dt+

1
vx

√
h̄

m

√
−idtξ

])
ψ (x (t− dt) , t− dt)

= exp

(
− i

h̄
V (x, t)

[
dt+ (1− i)

1
vx

√
h̄

2m

√
dtξ

])
ψ (x (t− dt) , t− dt)

= exp

(
− 1
h̄
V (x, t)

[
1
vx

√
h̄

2m
dW (t)

])
exp

(
− i

h̄
V (x, t)

[
dt+

1
vx

√
h̄

2m
dW (t)

])
ψ (x (t− dt) , t− dt)

(17).
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When we replace t with it in (15) and (16), it becomes

ψ (x, t) = exp

(
− 1
h̄

∂V (x, t)
∂y

[
1
vx

√
h̄

2m
dW (t)

]
· dy

)
exp

(
i

h̄
py · dy

)
ψ (x (t− dt) , t− dt)

(18).

py = −∂V (x, y)
∂y

[
dt+

1
vx

√
h̄

2m
dW (t)

]
(19).

To describe the fluctuating wave directly, (7),(17) and (18) are needed.
The wave motion itself fluctuates because of the existence of this solution.

We expect that the result of the two-slit experiment can be explained using this
new solution of Schrödinger equation: fluctuating wave motion.

For instance, there is an two-slit experiment with electron carried out by
Tonomura et al2. According to Tonomura et al this experiment is explained by
the following theories.

4. The theory of two-slit experiment in advanced research
laboratory, Hitachi Limited; Tonomura et al2.

The biprism consists of two parallel grounded plates with a fine filament
between them, the latter having a positive potential relative to the former. The
electrostatic potential is given by V (x, z) and the incoming electron wave by
exp i (kzz), the deflected wave is given by

ψ (x, z) = exp i
(
kzz −

me

h̄2kz

∫ z

−∞
V (x, z′) dz′

)
, T-(1)

The two waves having passed on each side of the filament can be approximated
by exp i (kzz ± kxx) up to a constant factor, where

kx = − me

h̄2kz

∫ ∞

−∞

(
∂V (x, z′)

∂x

)
x=a

dz′, T-(2)

and the symmetry V (x, z) = V (−x, z) has been taken into account. This can
be interpreted classically also:
−e [∂V (x, z′) /∂x]x=a is the x component of force exerted on the electron. Its
integral with respect to dz/vz = dt (vz = h̄kz/m) gives the impulse imparted
to it, which is the same in absolute value but reversed in sign, depending on
which side of the filament the electron passes. If the two waves overlap in the
observation plane to give

ψ (x, z) = exp (ikzz) [exp (−ikxx) + exp (ikxx)], T-(3)
then this leads to the interference fringes

|ψ (x, z)|2 = 4 cos2 kxx. T-(4)
The Copenhagen interpretation has concluded that ψ (x, z) is the “probability
amplitude”.

5. Alternative explanation to Copenhagen interpretation: Waviness

If vz is deleted from
dz/vz = dt, vz = h̄kz/m
that exists between the expression T-(2) and the expression T-(3) of the Tono-
mura thesis, it becomes

m

h̄kz
dz = dt.
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If this expression is substituted for the expression T-(1) of the Tonomura thesis,
it becomes

ψ (x, z) = exp i
(
kzz −

1
h̄

∫ t

t0

eV (x, z′) dt′
)

.

And the expression T-(2) of the Tonomura thesis becomes

kx =
px

h̄
= − 1

h̄

∫ t

t0

e

(
∂V (x, z′)

∂x

)
x=a

dt′.

However, because it is necessary to use the fluctuating wave motion (18),(19)
accurately, the impulse that electron receives is not
−e [∂V (x, z′) /∂x]x=a dt
but

−e [∂V (x, z′) /∂x]x=a

(
dt+

1
vz

√
h̄

2m
dW (t)

)
.

(Note : While the direction of incidence is x and the direction where electron
that receives power bends is y in (18),(19), the direction of incidence is z and
the direction where electron that receives power bends is x in Tonomura thesis.)
This is the cause of fluctuation.

The momentum of electron fluctuates by this fluctuation of impulse, and the
wave number vector of electron also fluctuates.

As understood when seeing (18),(19), the wave fluctuates only when it is
in potential, and the wave doesn’t fluctuate in the area that can be considered
potential to be 0.

So, kx is a different value in each wave that has occurred from biprism.
Expression T-(2) means that kx is determined by the accumulation of the im-
pulse that the electron wave received from potential energy when it went in the
biprism. In general, because the impulse fluctuates, the impulse that the first
wave received in the biprism and the impulse that the second wave received are
different. As a result, the value of kx is different according to each wave.
As shown by the expression T-(3)
ψ (x, z) = exp (ikzz) [exp (−ikxx) + exp (ikxx)]
of the Tonomura thesis, there is kx in the wave function that is reaching the
screen from right and left biprism. So the phase of wave fluctuates because it
receives the influence of fluctuation of the impulse.

The appearance of the interference when wave number kx fluctuates is seen
as follows.

By the expression T-(3) of the Tonomura thesis, the wave number vector of
the wave that comes from the left can be written as (kx, 0, kz) and the wave
number vector that comes from the right, (−kx, 0, kz) .

In general, because the impulse doesn’t fluctuate symmetrically, neither kx

from the left nor kx from the right are equal. Then, the wave number vector of
the wave that comes from the left is written as (kx (L) , 0, kz), and the wave num-
ber vector of the wave that comes from the right is written as (−kx (R) , 0, kz).
It becomes a different value because of the first wave, the second wave, and the
third wave even if paying attention only to kx (L) ( paying attention only to
kx (R) ).
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Figure 1. When the wave number kx (L) that comes from the left and the
wave number kx (R) that comes from the right are equal:

Bright spot appears at the center of the screen.

Figure 2: When the wave number kx (R) that comes from the right is larger
than the Wave number kx (L) that comes from the left:

Bright spot shifts left.

Figure 3: When the wave number kx (R) that comes from the right is smaller
than the Wave number kx (L) that comes from the left:
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Bright spot shifts right.

We suggest that this is the mechanism by which the bright spot is observed
at a random position. Because the impulse that the electron receives in the
potential energy that the filament makes fluctuates, the wave number kx (L)
of the wave that passes the left prism sometimes becomes large and at other
times it becomes small. The wave number kx (R) of the wave that passes the
right prism is also similar. As a result, the position that two waves strengthen
each other is different on each occasion as shown in the above figure. In current
quantum theory, only the case of Figure 1 is considered, and it is said that the
place enclosed in the following figure is a position of the interference fringes.

Figure 4: The position of the interference fringes:
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It follows from this that our interpretation is different from the current
interpretation of the quantum theory in that it becomes a very dynamic image
like two moving searchlights independently scattering waves of light into the
night sky. On the other hand, the image of current quantum theory is very
static.

The second point that requires clarification is why it is observed as “a spot”
in the experiment when the electron wave is weakened. The reason why it is
observed as “a spot” is that the effect of the diffraction (so-called Fraunhofer
diffraction) exacerbates the above-mentioned interference because the opening
of biprism is not the ideal one like the delta function but has some size in
an actual experiment. Therefore, strength of the electron wave on the screen
becomes narrowed shape like the interference fringes shown by cos function
narrowed by sinc function (sinx/x).

(Refer to the figure below. A part of the numerical value is excerpted from
the Tonomura thesis.)

Figure 5: The Fraunhofer diffraction in the two-slit experiment carried out by
Tonomura et al:
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Strength of the electron wave on the screen becomes shaped like a sliced
mountain. There were an estimated 400 slices in the Tonomura experiment. In
addition, only a very narrow area (center part of Airy disk so-called) in the top
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of a mountain will reflect because the pictures in this experiment were taken
with very limited sensitivity. It is concluded that this is the bright spot observed
on the screen.

Furthermore, the top of the mountain shakes at random due to the above-
mentioned fluctuation. The peak of the distribution of the Fraunhofer diffraction
appears at random because the potential energy (electric field) fluctuates and
the electron wave fluctuates. Also, because the electron wave discharged from
the electron gun is weak, only the part of the peak is taken of a picture.

Up to this point we have explained the two-slit experiment by only waviness.

6. Proposal to experiment

According to Tonomura theses, the width of the interference fringes is 7000Å
and the transverse coherence length is 140µm. If the Fraunhofar diffraction
pattern is a probability wave said by a present quantum theory, the bright
spot is sure to scatter over 280µm, and to appear by many hundreds of (400
theoretically) interference fringes. It is because the electron reaches in the edge
of the Fraunhofar diffraction even though the probability is low.

On the other hand, the number of interference fringes is sure to be only
ten or more in our proposal. It is because only peak of that figure is taken
of picture, and it fluctuates. The rough estimate is as follows. The standard
deviation (volatility) of fluctuating of the position of the peak of the Fraunhofar
diffraction is

σ =

√
h̄

2m

√
∆t

by (19).
According to Tonomura theses,
Distance from slit to screen : 1.5m
Velocity of electron : 1.3× 108m/s (Accelerating voltage : 50kV ).
So σ becomes about 0.8µm.
Therefore, ranges where the peak of the Fraunhofar diffraction is distributed
are 2 × 0.8 = 1.6µm in 1σ (cover rate of 68%). (×2 is a meaning of both
sides of normal distribution.) Therefore, the number of interference fringes
= 1.6µm÷ 900Å = 18. (Note : According to Tonomura theses, the width of the
interference fringes is 900Å theoretically while it is 7000Å experimentally. It is
because a spherical wave instead of a plane wave is incident on the biprism in
the actual experiment.) So it is sure to be taken a picture of only ten or more
interference fringes. Moreover, because fluctuating of the peak of the Fraunhofar
diffraction is normal distribution, it is expected that the interference fringe in
the center part is bright, and it darkens to the surrounding.

7. Conclusion

The wave motion itself fluctuates because of the existence of this solution

ψ (x, t) = exp
(
− i

h̄

∫ t

t0

V (x, t′) dt′
)
ψ (x0, t0)
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+exp
(
−π

4
i
)∫ t

t0

exp
(
− i

h̄

∫ t

u

V (x, t′) dt′
)
∂ψ (x, u)

∂x

√
h̄

m
dW (u).

We expect that the result of the two-slit experiment carried out by Tonomura et
al can be explained as follows using this new solution of Schrödinger equation:
fluctuating wave motion.

In the two-slit experiment, the wave number vector of each wave that occurs
from biprism fluctuates by normal distribution. The wave that occurred from
biprism is launched in various directions for this fluctuation. This fluctuation
is expressed by the probability distribution of normal distribution.

In conclusion, we should note that while in present quantum mechanics it is
the wave function that determines the probability distribution of the electron,
our observations show that it is not the wave function but the kinetic energy
exponential part that determines the probability distribution. As a result, wave
motion itself fluctuates. Furthermore, the bright spot observed on the screen is
not “an electron” but the peak of the distribution of the Fraunhofer diffraction.
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Appendix A “Normal distribution and kinetic energy”

In general, when x follows the Stochastic process
x− x0 = dx = µdt+ σdW = µdt+ σ

√
dtξ

(dW : Standard Brownian motion, ξ : Standard regular random variable), x
becomes normal distribution

Φ (x, t) =
1√

2πσ2dt
exp

[
− (x− x0 − µdt)2

2σ2dt

]
(20).

On the other hand, a kinetic energy paragraph of path integral becomes√
m

2πh̄dt
exp

[
− 1
h̄

1
2
m

(
dx

dt

)2

dt

]
after Euclidean approach.√

m

2πh̄dt
exp

[
− 1
h̄

1
2
m

(
dx

dt

)2

dt

]
=
√

m

2πh̄dt
exp

[
− 1
h̄

1
2
m

(dx)2

dt

]
=
√

m

2πh̄dt
exp

[
− 1
h̄

1
2
m

(x− x0)
2

dt

]
(21),
So, (20) corresponds to (21) after replacing

σ =

√
h̄

m
, µ = 0.

In a word, the process x follows is not
dx = µdt+ σdW
but
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dx = σdW
in path integral.

Appendix B “Ito’s lemma”

When X follows the Ito process
dX = a (X, t) dt+ b (X, t) dW (t),
the movement of function f (X, t) of X and t follows

df =
(
a (X, t)

∂f

∂X
+
∂f

∂t
+

1
2
∂2f

∂X2
{b (X, t)}2

)
dt+

∂f

∂X
b (X, t) dW (t).

Here, dW (t) means Standard Brownian motion.
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