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1 Introduction

It is appropiate to start by quoting Prof. Santilli: ”a first meaning of the
novel hadronic mechanics is that of providing the first known methods for quan-
titative studies of the interplay between matter and the underlying substratum.
The understanding is that space is the final frontier of human knowledge, with
potential outcomes beyond the most vivid science fiction of today”. In this al-
most prophetic observation, Prof. Santilli has pointed out to the essential role
of the substratum, its geometrical structure and the link with consciousness.
In the present article, which we owe to the kind invitation of Prof. Santilli, we
shall present similar views, specifically in presenting both quantum and hadronic
mechanics as space-time fluctuations, and we shall discuss the role of the sub-
stratum. As for the problem of human knowledge, we shall very briefly indicate
on how the present approach may be related to the fundamental problem of
consciousness, which is that of self-reference.

A central problem of contemporary physics is the distinct world views pro-
vided by QM and GR( short for quantum mechanics and general relativity,
respectively), and more generally of gravitation. In a series of articles [1-4,25]
and references therein, we have presented an unification between space-time
structures, Brownian motions, fluid dynamics and QM. The starting point is
the unification of space-time geometry and classical statistical theory, which
has been possible due to a complementarity of the objects characterizing the
Brownian motion, i.e. the noise tensor which produces a metric, and the drift
vector field which describes the average velocity of the Brownian, in jointly
describing both the space-time geometry and the stochastic processes. These
space-time structures can be defined starting from flat Euclidean or Minkowski
space-time, and they have in addition to a metric a torsion tensor which is
formed from the metric conjugate of the drift vector field. The key to this
unification lies in that the laplacian operator defined by this geometrical struc-
ture is the differential generator of the Brownian motions; stochastic analysis
which deals with the transformation rules of classical observables on diffusion
paths ensures that this unification is valid in both directions [26]. Thus , in this
equivalence, one can choose the Brownian motions as the original structures

1



determining a space-time structure, or conversely, the space-time structures
produce a Brownian motion process. Space-time geometries with torsion have
lead to an extension of the theory of gravitation which was first explored in
joint work by Einstein with Cartan [5], so that the foundations for the gravi-
tational field, for the special case in which the torsion reduces to its trace, can
be found in these Brownian motions. Furthermore, in [2] we have shown that
the relativistic quantum potential coincides , up to a conformal factor, with the
metric scalar curvature. In this setting we are lead to conceive that there is
no actual propagation of disturbances but instead an holistic modification of
the whole space-time structure due to an initial perturbation which provides for
the Brownian process modification of the original configuration. Furthermore,
the present theory which has a kinetic Brownian motion generation of the ge-
ometries, is related to Le Sage’s proposal of a Universe filled with all pervading
tiny particles moving in all directions as a pushing (in contrast with Newton’s
pulling force) source for the gravitational field [39]. Le Sage’s perspective was
found to be compatible with cosmological observations by H. Arp [40]. This
analysis stems from the assumption of a non-constant mass in GR which goes
back to Hoyle and Narlikar, which in another perspective developed by Wu and
Lin generates rotational forces [41]. These rotational forces can be ascribed to
the drift trace-torsion vector field of the Brownian processes through the Hodge
duality transformation [3], or still to the vorticity generated by this vector field.
In our present theory, motions in space and time are fractal, they generate the
gravitational field, and furthermore they generate rotational fields, in contrast
with the pulling force of Newton’s theory and the pushing force of Le Sage, or
in the realm of the neutron, the Coulomb force. Furthermore, in our construc-
tion the drift has built-in terms given by the conjugate of electromagnetic-like
potential 1-forms, whose associated intensity two-form generate vorticity, i.e.
angular momentum; these terms include the Hertz potential which is the basis
for the construction of superluminal solutions of Maxwell’s equations; see [2] and
references therein. So the present geometries are very different from the metric
geometries of general relativity and are not in conflict with present cosmological
observations.

The space-time geometrical structures of this theory can be introduced by
the Einstein λ transformations on the tetrad fields [5,2], from which the usual
Weyl scale transformations on the metric can be derived, but contrarily to Weyl
geometries, these structures have torsion and they are integrable in contrast
with Weyl’s theory; we have called these connections as RCW structures (short
for Riemann-Cartan-Weyl) [1-4]. This construction is a special case of the con-
struction of Riemannian or Lorentzian metrics presented in Section 3.5.3, in
which the generalized isotopic unit takes a diagonal form with equal elements
given by (the square of) a scale function, while the number field, the differen-
tial and integral calculus are the usual ones of practice in differential geometry;
these restrictions will be lifted to work with a full isotopic theory for HM in
extending the theory developed for QM; in distinction with HM, the usual scale
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transformations do not depend on anything but the space-time coordinates,
thus excluding the more general non-linear non-hamiltonian case contemplated
by HM. In distinction with GR which due to the lack of a source leads to incon-
sistencies discussed in Section 1.4, a theory based on torsion and in particular in
the case of a so-called absolute parallelism in which the torsion is derived from
the differential of the cotetrad field (the so-called Weitzenbock spaces), has a
geometrically defined energy-momentum tensor which is built from the torsion
tensor [23,44]. Furthermore, the trace-torsion has built-in electromagnetic po-
tential terms. We must recall that in Section 1.4 it was proved that gravitational
mass has partially an electromagnetic origin. So our original setup in terms of
torsion fields which can be non-null in flat Minkowski or Euclidean spaces (while
in these spaces curvature is null), does not lead in principle to the inconsisten-
cies observed before. There are other differences between the present approach
and GR which we would like to discuss. In the latter theory, the space-time
structure is absolute in the sense that it is defined without going through a self-
referential characterization. With the introduction of torsion, and especially in
the case of the trivial metric with null associated curvature tensor, we are in-
troducing a self-referential characterization of the geometry since the definition
of the manifold by the torsion, is through the concept of locus of a point (be
that temporal or spatial). Indeed, space and time can only be distinguished if
we can distinguish inhomogenities, and this is the intent of torsion, to measure
the dislocation (in space and time) in the manifold [52]. Thus all these theories
stem from a geometrical operation which has a logical background related to the
concept of distinction (and more fundamentally, the concept of identity, which
is prior to that of distinction) and its implementation through the operation of
comparison by parallel transport with the affine connection with non-vanishing
torsion. 1 In comparison, in GR there is also an operation of distinction carried
out by the parallel transport of pair of vector fields with the Levi-Civita metric
connection yielding a trivial difference, i.e. the torsion is null and infinitesi-
mal parallelograms trivially close, so that it does not lead to the appearence of
inhomogenities as resulting from this primitive operation of distinction; these
are realized through the curvature derived from the metric. But to close this
discussion, we refer again to the inconsistencies that an approach based on the
curvature viz a viz the present approach which places the appearence of space-
time in terms of deformations of the vacuum, and as such, has the same genesis
as Isorelativity developed by Prof. Santilli and presented in Section 3.5.5.

We have shown that this approach leads to non-relativistic QM both in
configuration space [3] and in the projective Hilbert state-space through the
stochastic Schroedinger equation [5] (in the latter case, it was proved shown that

1This can be further related with multivalued logics and the appearence of time waves
related to paradoxes, which in a cognitive systems approach yields the Schroedinger represen-
tation; furthermore this conception leads to the notion of reentrance of a space-time domain
into itself, as a self-referential cybernetic system, and ultimately to multidimensional time;
this may ultimately be linked to semiotics and its role in biology [44].
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this geometry is related to the reduction of the wave function can be described
by decoherence through noise [3,5]) , and further to Maxwell’s equation and its
equivalence with the Dirac-Hestenes equation of relativistic QM [2,21]. The fact
that non-relativistic QM can be linked to torsion fields was unveiled recently
[3]. In fact, torsion fields have been considered to be as providing deviations of
GR outside the reach of present precision measurements [22]. It turns out that
quantum wave-functions verifying linear or non-linear Schroedinger equations
are another universal, or if wished, mundane examples of torsion fields. We
shall show in the present article, that this approach extends to the strong inter-
actions as described by HM and thus that the isotopic lift of the Schroedinger
wave function is also a source for torsion, albeit one which incorporates the
full non-linearity and non-hamiltonian character of the strong interactions. The
quantum random ensembles which generate the quantum geometries, or which
dually can be seen as generated by them, in the case of the Schroedinger equa-
tion can be associated with harmonic oscillators with disordered random phase
and amplitude first proposed by Planck, which have the same energy spectrum
as the one derived originally by Schroedinger [56]. The probabilities of these en-
sembles are classical since they are associated with classical Brownian motions
in the configuration and projective Hilbert-state manifolds, in sharp contrast
with the Copenhagen interpretation of QM which is constructed in terms of
single system description, and they are related to the scalar amplitude of the
spinor field in the case of the Dirac field, and in terms of the modulus of the
complex wave function in the non-relativistic case [2,3,21]. We would like to
recall at this stage that Khrennikov has proved that Kolmogorov’s axiomatics
of classical probability theory, in a contextual approach which means an a-priori
consideration of a complex of physical conditions, permits the reconstruction of
quantum theory [27]. Thus, Khrennikov ’s theory places the validity of quantum
theory in ensembles, in distinction with the Copenhagen interpretation, and is
known as the Vaxho interpretation of quantum mechanics. In the present ap-
proach we obtain both a geometrical characterization of the quantum domain
through random ensembles performing Brownian motions which generate the
space and time geometries, and additionally a characterization for single sys-
tems through the topological Bohr-Sommerfeld invariants associated with the
trace-torsion by introducing the concept of Pfaffian system developed by Kiehn
in his geometro-topological theory of processes [42], specifically applied to the
trace-torsion one-form [44]. Most remarkably, in our setting another relevant
example of these space-time geometries is provided by viscous fluids obeying the
invariant Navier-Stokes equations of fluid-dynamics, or alternatively the kine-
matical dynamo equation for the passive transport of magnetic fields on fluids
[1,4]. This is of importance with respect to cosmology, since cosmological ob-
servations have registered turbulent large-scale structures which are described
in terms of the Navier-Stokes equations [45].

There have been numerous attempts to relate non-relativistic QM to diffu-
sion equations; the most notable of them is Stochastic Mechanics due to Nelson
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[9]. Already Schroedinger proposed in 1930-32 that his equation should be re-
lated to the theory of Brownian motions (most probably as a late reaction to
his previous acceptance of the single system probabilistic Copenhagen interpre-
tation), and further proposed a scheme he was not able to achieve, the so-called
interpolation problem which requires to describe the Brownian motion and the
wave functions in terms of interpolating the initial and final densities in a given
time-interval [9]. More recently Nagasawa presented a solution to this inter-
polation problem and further elucidated that the Schroedinger equation is in
fact a Boltzmann equation [14], and thus the generation of the space and time
structures produced by the Brownian motions has a statistical origin. 2 Neither
Nagasawa nor Nelson presented these Brownian motions as space-time struc-
tures, but rather as matter fields on the vacuum.3. Furthermore, Kiehn has
proved that the Schroedinger equation in spatial 2D can be exactly transformed
into the Navier-Stokes equation for a compressible fluid, if we further take the
kinematical viscosity ν to be h̄

m with m the mass of the electron [12]. We
have argued in [3] that the Navier-Stokes equations share with the Schroedinger
equation, that both have a RCW geometry at their basis: While in the Navier-
Stokes equations the trace-torsion is −1

2ν u with u the time-dependent velocity
one-form of the viscous fluid, in the Schroedinger equation, the trace-torsion
one-form incorporates the logarithmic differential of the wave function -just
like in Nottale’s theory [11]- and further incorporates electromagnetic potential
terms in the trace-torsion one-form. This correspondence between trace-torsion
one-forms is what lies at the base of Kiehn’s correspondance, with an important
addendum: While in the approach of the Schroedinger equation the probability
density is related to the Schroedinger scale factor (in incorporating the complex
phase) and the Born formula turns out to be a formula and not an hypothesis,
under the transformation to the Navier-Stokes equations it turns out that the
probability density of non-relativistic quantum mechanics, is the enstrophy den-
sity of the fluid, i.e. the square of the vorticity, which thus plays a geometrical
role that substitutes the probability density. Thus, in this approach, while there

2We have discussed in [3] that the solution of the interpolation problem leads to consider
time to be more than a classical parameter, but an active operational variable, as recent
experiments have shown [46] which have elicited theoretical studies in [55]; other experiments
that suggest an active role of time are further discussed in [3].

3Another developments following Nelson’s approach, in terms of an initial fractal structure
of space-time and the introduction of Nelson’s forward and backward stochastic derivatives,
was developed by Nottale in his Scale Theory of Relativity [11]. Remarkably, his approach has
promoted the Schroedinger equation to be valid for large scale structures, and predicted the
existence of exo-solar planets which were observationally verified to exist [13]. This may further
support the idea that the RCW structures introduced in the vacuum by scale transformations,
are valid independently of the scale in which the associated Brownian motions and equations
of QM are posited. Nottale’s covariant derivative operator turns to be a particular case of our
RCW laplacian [3]. We would like to mention also the important developments of a theory of
space-time with a Cantorian structure being elaborated in numerous articles by M. El Naschie
[47] and a theory of fractals and stochastic processes of QM which has been elaborated by G.
Ord [48].
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exist virtual paths sustaining the random behaviour of particles (as is the case
also of the Navier-Stokes equations) and interference such as in the two-slit
experiments can be interpreted as a superposition of Brownian paths [14], the
probability density has a purely geometrical fluid-dynamical meaning. This is
of great relevance with regards to the fundamental role that the vorticity, i.e.
the fluid’s particles angular-momentum has as an organizing structure of the
geometry of space and time. In spite that the torsion tensor in this theory
is naturally restricted to its trace and thus generates a differential one-form,
in the non-propagating torsion theories it is interpreted that the vanishing of
the completely skew-symmetric torsion implies the absence of spin and angular
momentum densities [22], it is precisely the role of the vorticity to introduce
angular momentum into the present theory.

To explain the fundamental kinematical role of torsion in QM and classical
mechanics of systems with Lie group symmetries, we note that if we consider as
configuration space a Lie group, there is a canonical connection whose torsion
tensor coefficients are non other than the coefficients of the Lie-algebra under
the Lie bracket operation [38]. Thus a Lie group symmetry is characterized by
the torsion tensor for the canonical connection. Thus the Lie-Santilli isotopic
theory implies a deformation of the torsion tensor of the canonical connection by
the generalized unit [15-20].4 With regards to another role of torsion in classical
mechanics, it appears as describing friction, or more generally, non-anholonomic
terms which produce additional terms in the equations of motion, which were
obliterated by contemporary physics with the exception of Birkhoffian mechan-
ics and discussed in Sections 1.2.4, 3.1, 3.3 and 4.1.2 by Prof. Santilli, which
originated in the monographs [60]. In fact the attention of this author to HM
at an early stage, stemmed from his work (jointly with S.Sternberg) in clas-
sical mechanical systems with angular momentum, which could be formulated
without lagrangians nor hamiltonians, and furthermore could not be reduced
to the canonical form of conservative systems [65]. Further in common to HM
and torsion geometries, is that the latter are associated to angular momentum
densities [22], while in HM the isotopic unit incorporates spin-up spin-down
couplings such as in the Rutherford-Animalu-Santilli model of the neutron [15]
[51]. Possible relations between torsion as spin or angular momentum densi-
ties can be ventured in relation with anomalous spin interactions of the proton,
and magnetic resonances [49]. Furthermore, it has been shown that completely
skew-symmetric torsion can produce a spin flip of high energy fermionic matter
at very high densities, and that in this situation helicity can be identified with
spin [43]. An intrinsic macroscopic angular momentum would be the evidence of
this phenomena.This may be of relevance when taking in consideration the time

4The introduction of this generalized unit, in contrast with the basic unit of mathematics
and physics, establishes a relation between these new units and physical processes which is
unknown to mathematics, and is presently developed in terms of an arithmetic of forms which
follows from the principle of distinction previously alluded, the multivalued logics associated
to it and self-reference [44].
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periodicity of the fine structure of histograms and its relation to macroscopic
angular momentum which we have discussed in [3] and others we shall discuss
in this article.

To understand the need of carrying the extensions produced by the isotopic
lifts, it is based in the fact that the isotopic lift of Relativity due to Santilli (see
[18]) is applicable for the electromagnetic and weak interactions but not appli-
cable for the case of hadrons. These have a charge radius of 1 fm (10−13cm)
which is the radius of the strong interactions. Unlike the electromagnetic and
weak interactions a necessary condition to activate the strong interaction is that
hadrons enter into a condition of mutual interpenetration. In view of the devel-
opments below, we would like to stress that the modification of the symmetries
of particles under conditions of possible fusion, is the first step for the usual
developments of fusion theories which have been represented in terms of diffu-
sion processes that overcome the Coulomb repulsive potential which impedes
the fusion [32]; Brownian motions and other stochastic processes also appear in
a phenomenological approach to the many body problem in particle and nuclear
physics, but with no hint as to the possibility of an underlying space-time struc-
ture [61]. The basic idea goes back to the foundational works of Smoluchowski
(independently of A. Einstein’s work in the subject) in Brownian motion [33].
In the case of fusion theories, we have a gas of neutrons (which have an internal
structure) and electrons, or an hadron gas; in these cases the fused particles are
considered to be alike a compressible fluid with an unstable neck in its fused
drops which have to be stabilized to achieve effective fusion; we can see here
the figure of deformed symmetries. Thus, the situation for the application of
Brownian motion to fusion is a natural extension to the subatomic scale of the
original theory. We finally notice that the models for fusion in terms of diffusion
do not require QM nor QCD [32]. In contrast, HM stems from symmetry group
transformations that describe the contact fusion processes that deform the neu-
tron structure, and lead to the isotopic Schroedinger equation which in this
article, together with the isotopic Heisenberg representation, will be applied to
establish a link between the RCW geometries, fusion processes and diffusions.
The reason for the use of the iso-Heisenberg representation, is that in Santilli’s
theory, the isotopic lift of the symmetries in carried out in terms of the iso-
Heisenberg representation, where its connection with classical mechanics under
the quantization rules including the isotopic lift is transparent. Similarly to QM
it will turn out to be that this quantization that leads to HM can be framed
in another terms, i.e. Brownian motions appear to be quantum representations
with no need of a quantization of classical mechanics, which can nevertheless be
achieved by taking in account the fluctuations represented by the noise tensor
of these random motions.
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2 RIEMANN-CARTAN-WEYL GEOMETRIES

In this section we follow [1,2]. In this articleM denotes a smooth connected
compact orientable n-dimensional manifold (without boundary). While in our
initial works, we took for M to be space-time, there is no intrinsic reason for
this limitation, in fact if can be an arbitrary configuration manifold and still
a phase-space associated to a dynamical system. The paradigmatical example
of the latter, is the projective space associated to a finite-dimensional Hilbert-
space of a quantum mechanical system [3,5]. We shall further provide M with
an affine connection, or still by a covariant derivative operator ∇ which we
assume to be compatible with a given metric g on M , i.e. ∇g = 0. Here,
the metric can be the Minkowski degenerate metric, or an arbitrary positive-
definite (i.e. Riemannian) metric. Given a coordinate chart (xα) (α = 1, . . . , n)
of M , a system of functions on M (the Christoffel symbols of ∇) are defined by
∇ ∂

∂xβ

∂
∂xγ = Γ(x)α

βγ
∂

∂xα . The Christoffel coefficients of ∇ can be decomposed
as:

Γα
βγ =

{
α

βγ

}
+

1
2
Kα

βγ . (1)

The first term in (1) stands for the metric Christoffel coefficients of the Levi-
Civita connection∇g associated to g, i.e.

{
α
βγ

}
= 1

2 ( ∂
∂xβ gνγ+ ∂

∂xγ gβν− ∂
∂xν gβγ)gαν ,

and

Kα
βγ = Tα

βγ + Sα
βγ + Sα

γβ , (2)

is the cotorsion tensor, with Sα
βγ = gανgβκT

κ
νγ , and Tα

βγ = (Γα
βγ − Γα

γβ) is the
skew-symmetric torsion tensor. We are interested in (one-half) the Laplacian
operator associated to ∇, i.e. the operator acting on smooth functions on M
defined as

H(∇) := 1/2∇2 = 1/2gαβ∇α∇β . (3)

A straightforward computation shows that H(∇) only depends in the trace of
the torsion tensor and g, since it is

H(∇) = 1/24g + Q̂ ≡ H(g,Q), (4)

with Q := Qβdx
β = T ν

νβdx
β the trace-torsion one-form and Q̂ is the vector field

associated to Q via g (the so-called g conjugate vector field to the one-form Q,
i.e.

Q̂(f) = g(Q, df), (5)

for any smooth function f defined on M . Finally, 4g is the Laplace-Beltrami
operator of g:

4g = gαβ∇g
∂

∂xα
∇g

∂

∂xβ

= gαβ ∂2

∂xα∂xβ
− gαβ

{
γ

αβ

}
∂

∂xγ
.(6)
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In this expression the partial derivatives are taken with respect to the Levi-
Civita connection. Therefore, assuming that g is non-degenerate, we have de-
fined a one-to-one mapping

∇ ; H(g,Q) = 1/24g + Q̂

between the space of g-compatible linear connections ∇ with Christoffel coeffi-
cients of the form

Γα
βγ =

{
α

βγ

}
+

2
(n− 1)

{
δα
β Qγ − gβγ Q

α
}
, n 6= 1 (7)

and the space of elliptic second order differential operators on functions. The
extensions of this laplacian to differential forms and in particular, to fluid-
dynamics, has been presented in [1] and [4].

3 RIEMANN-CARTAN-WEYL DIFFUSIONS

In this section we shall recall the correspondence between RCW connec-
tions defined by (7) and diffusion processes of scalar fields having H(g,Q) as its
diffrential generator. Thus, naturally we have called these processes as RCW
diffusion processes.. For the extensions to describe the diffusion processes of
differential forms, see [1, 4]. For the sake of generality, in the following we shall
further assume that Q = Q(τ, x) is a time-dependent 1-form. In this setting τ
is the universal time variable due to Stuckelberg [8]; for a very sharp account
of the relation of this time to Einsten’s time, t, we refer to Horwitz et al [28].
The stochastic flow associated to the diffusion generated by H(g,Q) has for
sample paths the continuous curves τ 7→ x(τ) ∈ M satisfying the Itô invariant
non-degenerate s.d.e. (stochastic differential equation)

dx(τ) = σ(x(τ))dW (τ) + Q̂(τ, x(τ))dτ. (8)

In this expression, σ : M × Rm → TM is such that σ(x) : Rm → TM is linear
for any x ∈ M , the noise tensor, so that we write σ(x) = (σα

i (x)) (1 ≤ α ≤ n,
1 ≤ i ≤ m) which satisfies

σα
i σ

β
i = gαβ , (9)

where g = (gαβ) is the expression for the metric in covariant form, and {W (τ), τ ≥
0} is a standard Wiener process on Rm, with zero mean with respect to the stan-
dard centered Gaussian function, and covariance given by diag(τ, . . . , τ); finally,
dW (τ) = W (τ + dτ)−W (τ) is an increment. Now , it is important to remark
that m can be arbitrary, i.e. we can take noise tensors defined on different
spaces, and obtain the essentially the same diffusion process [26]. In regards to
the equivalence between the stochastic and the geometric picture, this enhances
the fact that there is a freedom in the stochastic picture, which if chosen as
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the originator of the equivalence, points out to a more fundamental basis of the
stochastic description. This is satisfactory, since it is impossible to identify all
the sources for noise, and in particular those coming from the vacuum, which
we take as the source for the randomness. Note that in taking the drift and
the diffusion tensor as the original objects to build the geometry, the latter is
derived from objects which are associated to collective phenomena. Note that
if we start with eq. (8), we can reconstruct the associated RCW connection by
using eq.(9) and the fact that the trace-torsion is the g-conjugate of the drift,
i.e., in simple words, by lowering indexes of Q̂ to obtain Q. We shall not go into
the details of these constructions, which relies heavily on stochastic analysis on
smooth manifolds [26].

Observations 1. Note that in the above construction of the s.d.e. all terms
corresponding to the Levi-Civita connection

{
α
βγ

}
have disappeared completely.

In fact one can start with a Laplacian written without these terms, say

H := 1/2gαβ ∂2

∂xα∂xβ
+ Q̂α∂α, (10)

and rewrite it as
1
2
4g + b̃α∂α (11)

with

b̃α = Q̂α +
1
2
gβγ

{
α

βγ

}
; (12)

we then redefine the connection ∇ = (Γγ
αβ) to be compatible with g and such

that b̃α = 1
2 [gβγ

{
α
βγ

}
− Γα

βγ ] so that finally our original RCW laplacian H(∇)
takes the form H(g, b̃) of eq. (4) and the s.d.e. is given by (8); c.f. pages
285 − 289 in Ideda Watanabe [26]. From this follows that we can write the
laplacians either with the Levi-Civita covariant derivative or the usual deriva-
tive for characterizing the diffusion processes corresponding to the Schroedinger
equation; this is also valid for the iso-Schroedinger equations, starting by pro-
ducing the isotopic lift of the differential operator, or further, the isotopic lift
of the covariant derivative operator, the isocovariant differential introduced in
Section 3.2.9.C above.

4 RCW GEOMETRIES, BROWNIAN MOTIONS
AND THE SCHROEDINGER EQUATION

We have shown that we can represent the space-time quantum geometries
for the relativistic diffusion associated with the invariant distribution, so that
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Q = 1
2dlnρ, with ρ = ψ2 and H(g,Q) has a self-adjoint extension for which

we can construct the quantum geometry on state-space and still the stochas-
tic extension of the Schroedinger equation defined by this operator on taking
the analytical continuation on the time variable for the evolution parameter
[3]. In this section which retakes the solution of the Schroedinger problem of
interpolation by Nagasawa [14], we shall present the equivalence between RCW
geometries, their Brownian motions and the Schroedinger equation which is a
different approach to taking the analytical continuation in time, which by the
way, has a very important significance in terms of considering time to be an ac-
tive variable ; see [3]. We shall now present the construction of non-relativistic
QM with the restriction that the Hodge decomposition of the trace-torsion re-
stricts to its exact component, excluding thus the electromagnetic potential
terms of the full trace-torsion which we considered in [2,3]. So that we take
Q = Q(t, x) = dlnft(x) where f(t, x) = ft(x) is a function defined on the con-
figuration manifold given by [a, b] ×M , where M is a 3-dimensional manifold
provided with a metric, g. The construction applies as well to the general case
as well, as we shall show further below. The scheme to determine f will be to
manifest the time-reversal invariance of the Schroedinger representation in terms
of a forward in time diffusion process and its time-reversed representation for
the original equations for creation and annihilation diffusion processes produced
when there is no background torsion field, whose explicit form and relation to
f we shall determine in the sequel. From now onwards, the exterior differential,
the divergence operator and the laplacian will act on the M manifold variables
only, so that we shall write their action on fields, say dft(x), to signal that the
exterior differential acts only on the x variables of M . We should remark that
in this context, the time-variable t of non-relativistic theory and the evolution
parameter τ , are identical [28]. Let

L =
∂

∂t
+

1
2
4g =

∂

∂t
+H(g, 0). (13)

Let p(s, x; t, y) be the weak fundamental solution of

Lφ+ cφ = 0. (14)

The interpretation of this equation as one of creation (whenever c > 0) and an-
nihilation (c < 0) of particles is warranted by the Feynman-Kac representation
for the solution of this equation [14]. Then φ = φ(t, x) satisfies the equation

φ(s, x) =
∫

M

p(s, x; t, y)φ(t, y)dy, (15)

where for the sake of simplicity, we shall write in the sequel dy = volg(y) =√
det(g)dy1 ∧ . . . ∧ dy3. Note that we can start for data with a given function

φ(a, x), and with the knowledge of p(s, x; a, y) we define φ(t, x) =
∫

M
p(t, x; a, y)dy.
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Next we define

q(s, x; t, y) =
1

φ(s, x)
p(s, x; t, y)φ(t, y), (16)

which is a transition probability density, i.e.∫
M

q(s, x; t, y)dy = 1, (17)

while ∫
M

p(s, x; t, y)dy 6= 1. (18)

Having chosen the function φ(t, x) in terms of which we have defined the prob-
ability density q(s, x; t, y) we shall further assume that we can choose a second
bounded non-negative measurable function φ̆(a, x) on M such that∫

M

φ(a, x)φ̆(a, x)dx = 1, (19)

We further extend it to [a, b]×M by defining

φ̆(t, y) =
∫
φ̆(a, x)p(a, x; t, y)dx,∀(t, y) ∈ [a, b]×M, (20)

where p(s, x; t, y) is the fundamental solution of eq. (14).
Let {Xt ∈ M,Q} be the time-inhomogeneous diffusion process in M with

the transition probability density q(s, x; t, y) and a prescribed initial distribution
density

µ(a, x) = φ̆(t = a, x)φ(t = a, x) ≡ φ̆a(x)φa(x). (21)

The finite-dimensional distribution of the process {Xt ∈ M, t ∈ [a, b]} with
probability measure on the space of paths which we denote as Q ; for a = t0 <
t1 < . . . < tn = b, it is given by

EQ [f(Xa, Xt1 , . . . , Xtn−1, Xb)] =
∫

M

dx0µ(a, x0)q(a, x0; t1, x1)dx1 . . .

q(t1, x1; t2, x2)dx2 . . . q(tn−1, xn−1, b, xn)dxn

f(x0, x1, . . . , xn−1, xn) := [µaq >> (22)

which is the Kolmogorov forward in time (and thus time-irreversible) represen-
tation for the diffusion process with initial distribution µa(x0) = µ(a, x0), which
using eq. (16) can still be rewritten as∫

M

dx0µa(x0)
1

φa(x0)
p(a, x0; t1, x1)φt1(x1)dx1

1
φt1(x1)

dx1p(t1, x1; t2, x2)

φt2(x2)dx2 . . .
1

φ(tn−1, xn−1)
p(tn−1, xn−1; b, xn)φb(xn)dxnf(x0, . . . , xn) (23)
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which in account of µa(x0) = φ̆a(x0)φa(x0) and eq. (16) can be written in the
time-reversible form∫

M

φ̆a(x0)dx0p(a, x0; t1, x1)dx1p(t1, x1; t2, x2)dx2 . . . p(tn−1, xn−1; b, xn)

φb(xn)dxnf(x0, . . . , xn) (24)

which we write as
= [φ̆ap >><< pφb]. (25)

This is the formally time-symmetric Schroedinger representation with the tran-
sition (but not probability) density p. Here, the formal time symmetry is seen
in the fact that this equation can be read in any direction, preserving the physi-
cal sense of transition. This representation, in distinction with the Kolmogorov
representation, does not have the Markov property.

We define the adjoint transition probability density q̆(s, x; t, y) with the φ̆-
transformation

q̆(s, x; t, y) = φ̆(s, x)p(s, x; t, y)
1

φ̆(t, y)
(26)

which satisfies the Chapmann-Kolmogorov equation and the time-reversed nor-
malization ∫

M

dxq̆(s, x; t, y) = 1. (27)

We get

EQ̆ [f(Xa, Xt1 , . . . , Xb)] =
∫

M

f(x0, . . . , xn)q̆(a, x0; t1, x1)dx1q̆(t1, x1; t2, x2)dx2

. . . q̆(tn−1, xn−1; b, xn)φ̆(b, xn)φ(b, xn)dxn, (28)

which has a form non-invariant in time, i.e. reading from right to left, as

<< q̆φ̂bφb] =<< q̆µ̂b], (29)

which is the time-reversed representation for the final distribution µb(x) =
φ̆b(x)φb(x). Now, starting from this last expression and rewriting it in a similar
form that is in the forward process but now with φ̆ instead of φ, we get∫

M

dx0φ̆a(x0)p(a, x0; t1, x1)
1

φ̆t1(x1))
dx1φ̆(t1, x1)p(t1, x1; t2, x2)

1

φ̆t2(x2)
dx2

. . . dxn−1φ̆(tn−1, xn−1)p(tn−1, xn−1; b, xn)
1

φ̆(b, xn)
φ̆b(xn)φ(b, xn)dxnf(x0, . . . , xn) (30)

which coincides with the time-reversible Schroedinger representation [φ̆ap >><<
pφb].
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We therefore have three equivalent representations for the diffusion process:
The forward in time Kolmogorov representation, the backward Kolmogorov rep-
resentation, which are both naturally irreversible in time, and the time-reversible
Schroedinger representation, so that we can write succintly,

[µaq >>= [φ̆ap >><< pφb] =<< q̆µb],with µa = φaφ̆a, µb = φbφ̆b. (31)

In addition of this formal identity,we have to establish the relations between
the equations that have led to them. We first note, that in the Schroedinger
representation, which is formally time-reversible, we have an interpolation of
states between the initial data φ̆a(x) and the final data, φb(x). The information
for this interpolation is given by a filtration of interpolation Fr

a ∪ Fs
b , which

is given in terms of the filtration for the forward Kolmogorov representation
F = F t

a, t ∈ [a, b] which is used for prediction starting with the initial density
φaφ̆a = µa and the filtration Fb

t for retrodiction for the time-reversed process
with initial distribution µb.

We observe that q and q̆ are in time-dependent duality with respect to the
measure

µt(x)dx = φ̆t(x)φt(x)dx, (32)

We shall now extend the state-space of the diffusion process to [a, b]×M , to
be able to transform the time-inhomogeneous processes into time-homogeneous
processes, while the stochastic dynamics still takes place exclusively in M . This
will allow us to define the duality of the processes to be with respect to µt(x)dtdx
and to determine the form of the exact term of the trace-torsion, and ultimately,
to establish the relation between the diffusion processes and Schroedinger equa-
tions, both for potential linear and non-linear in the wave-functions. If we define
time-homogeneous semigroups of the processes on {(t,Xt) ∈ [a, b]×M} by

Prf(s, x) =
{
Qs,s+rf(s, x) , s ≥ 0
0 , otherwise (33)

and

P̆rg(t, y) =
{
gQt−r,t(t, y) , r ≥ 0
0 , otherwise (34)

then

< g, Prf >µtdtdx=< P̆rg, f >µtdtdx, (35)

which is the duality of {(t,Xt)} with respect to the µtdtdx density. We remark
here that we have an augmented density by integrating with respect to time t.
Consequently, if in our spacetime case we define for at(x), ât(x) time-dependent
one-forms on M (to be determined later)

Bα : =
∂α

∂t
+H(g, at)αt, (36)

B0µ : = −∂µ
∂t

+H(g, at)†µt, (37)
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and its adjoint operators

B̆β = −∂β
∂t
−H(g, ăt)†βt, (38)

(B̆)0µt =
∂µt

∂t
−H(g, ăt)†µt, (39)

where by H(g, ăt)† we mean the volg-adjoint of this operator, i.e. H(g, ăt)†µt =
1
24gµt−divg(µăt) . From [3,14] follows that the duality of space-time processes

< Bα, β >µt(x)dtdx=< α, B̆β >µt(x)dtdx, (40)

is equivalent to

at(x) + ăt(x) = d ln µt(x) ≡ d ln (φt(x)φ̆t(x)), (41)
B0µt(x) = 0. (42)

The latter equation being the Fokker-Planck equation for the diffusion with
trace-torsion given by a + A, then the Fokker-Planck equation for the adjoint
(time-reversed) process is valid, i.e.

(B̆)0µt(x) = 0. (43)

Substracting eqs. (39) and (40) we get the final form of the duality condition

∂µ

∂t
+ divg[(

at − ăt

2
)µt)] = 0, for µt(x) = φ̆t(x)φt(x). (44)

Therefore, we can establish that the duality conditions of the diffusion equation
in the Kolmogorov representation and its time reversed diffusion lead to the
following conditions on the additional elements of the drift vector fields:

at(x) + ăt(x) = d ln µt(x) ≡ d ln (φt(x)φ̆t(x)), (45)
∂µ

∂t
+ divg[(

at(x)− ăt(x)
2

)µt(x)] = 0. (46)

If we assume that at−ât is an exact one-form, i.e., there exists a time-dependent
differentiable function S(t, x) = St(x) defined on [a, b]×M such that for t ∈ [a, b],

at(x)− ăt(x) = d ln
φt(x)

φ̆t(x)
= 2dSt(x) (47)

which together with
at(x) + ăt(x) = d ln µt(x), (48)

implies that on D(t, x) we have

at(x) = d ln φt(x), (49)

ăt(x) = d ln φ̆t(x) (50)
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Introduce now Rt(x) = R(t, x) = 1
2 lnφt(x)φ̆t(x) and St(x) = S(t, x) = 1

2 lnφt(x)

φ̆t(x)
,

so that

at(x) = d(Rt(x) + St(x)), (51)
ăt(x) = d(Rt(x)− St(x)), (52)

and eq. (46) takes the form

∂R

∂t
+

1
2
4gSt + g(dSt, dRt) = 0. (53)

Remarks. We have mentioned the fact that there is a hidden active role of
time in QM [55], which in the above construction is built-in the very definition
of the probability density in terms of a final and initial distributions. This back
action of time appears to be not exclusive of QM. In the theory of growth of
sea shells due to Santilli and Illert, it was shown that it cannot be explained by
Minkowskian nor Euclidean geometry, but their isotopic lifts and their duals,
and this requires the introduction of time duality and four-fold time [58]; this
model has been further applied to diverse problems of morphology in biology
by Reverberi [59]. We further note that the time-dependent function S on the
3-space manifold, is defined by eq. (47) up to addition of an arbitrary function
of t, and when further below we shall take this function as defining the complex
phase of the quantum Schroedinger wave, this will introduce the quantum-phase
indetermination of the quantum evolution, as we discussed already in the setting
of geometry of the quantum state-space [3,5].

Therefore, together with the three different time-homogeneous representa-
tions {(t,Xt), t ∈ [a, b], Xt ∈ M} of a time-inhomogeneous diffusion process
{Xt,Q) on M we have three equivalent dynamical descriptions. One descrip-
tion, with creation and killing described by the scalar field c(t, x) and the dif-
fusion equation describing it is given by a creation-destruction potential in the
trace-torsion background given by an electromagnetic potential

∂p

∂t
+H(g, 0)(x)p+ c(t, x)p = 0; (54)

the second description has an additional trace-torsion a(t, x) , a 1-form on R×M

∂q

∂t
+H(g, at)q = 0. (55)

while the third description is the adjoint time-reversed of the first representation
given by φ̆ satisfying the diffusion equation on the background with no torsion,
i.e.

−∂φ̆
∂t

+H(g, 0)φ̆+ cφ̆ = 0. (56)

16



The second representation for the full trace-torsion diffusion forward in time
Kolmogorov representation, we need to adopt the description in terms of the
fundamental solution q of

∂q

∂t
+H(g, at)q = 0, (57)

for which one must start with the initial distribution µa(x) = φ̆a(x)φa(x). This
is a time t-irreversible representation in the real world, where q describes the
real transition and µa gives the initial distribution. If in addition one traces the
diffusion backwards with reversed time t, with t ∈ [a, b] running backwards, one
needs for this the final distribution µb(x) = φ̆b(x)φb(x) and the time t reversed
probability density q̂(s, x; t, y) which is the fundamental solution of the equation

−∂q̆
∂t

+H(g, ăt)q̂ = 0, (58)

with additional trace-torsion one-form on R×M given by â, where

ăt + at = dlnµt(x), with µt = φtφ̆t, (59)

where the diffusion process in the time-irreversible forward Kolmogorov repre-
sentation is given by the Ito s.d.e

dXi
t = σi

j(Xt)dW
j
t + ai(t,Xt)dt, (60)

and the backward representation for the diffusion process is given by

dXi
t = σi

j(Xt)dW
j
t + ăi(t,Xt)dt, (61)

where a, ă are given by the eqs. (51, 52), and (σσ†)αβ = gαβ .
We follow Schroedinger in pointing that φ and φ̆ separately satisfy the

creation and killing equations, while in quantum mechanics ψ and ψ̄ are the
complex-valued counterparts of φ and φ̂, respectively, they are not arbitrary
but

φφ̆ = ψψ̄. (62)

Thus, in the following , this Born formula, once the equations for ψ are deter-
mined, will be a consequence of the constructions, and not an hypothesis on the
random basis of non-relativistic mechanics.

Therefore, the equations of motion given by the Ito s.d.e.

dXi
t = gradgφ

i(t,Xt)dt+ σi
j(Xt)dW

j
t , (63)

which are equivalent to
∂u

∂t
+H(g, at)u = 0 (64)
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with at(x) = dlnφt(x) = d(Rt(x) + St(x)), determines the motion of the en-
semble of non-relativistic particles. Note that this equivalence requires only the
Laplacian for the RCW connection with the forward trace-torsion full one-form

Q(t, x) = dlnφt(x) = d(Rt(x) + St(x)). (65)

In distinction with Stochastic Mechanics due to Nelson [9], and contempo-
rary ellaborations of this applied to astrophysics as the theory of Scale Rel-
ativity due to Nottale [11][13], we only need the form of the trace-torsion for
the forward Kolmogorov representation, and this turns to be equivalent to the
Schroedinger representation which interpolates in time-symmetric form between
this forward process and its time dual with trace-torsion one-form given by
ăt(x) = dlnφ̆t(x) = d(Rt(x)− St(x)).

Finally, let us how this is related to the Schroedinger equation. Consider
now the Schroedinger equations for the complex-valued wave function ψ and its
complex conjugate ψ̄, i.e. introducing i =

√
−1, we write them in the form

i
∂ψ

∂t
+H(g, 0)ψ − V ψ = 0 (66)

−i∂ψ̄
∂t

+H(g, 0)ψ̄ − V ψ̄ = 0, (67)

which are identical to the usual forms. So, we have the imaginary factor ap-
pearing in the time t, which we confront with the diffusion equations generated
by the RCW connection with null trace-torsion, i.e. the system

∂φ

∂t
+H(g, 0)φ+ cφ = 0, (68)

−∂φ̆
∂t

+H(g, 0)φ̆+ cφ̆ = 0, (69)

and the diffusion equations determined by both the RCW connections with
trace-torsion a and ă, i.e.

∂q

∂t
+H(g, at)q = 0, (70)

−∂q̆
∂t

+H(g, ăt)q̂ = 0, (71)

which are equivalent to the single equation

∂q

∂t
+H(g, dlnφt)q = 0. (72)

If we introduce a complex structure on the two-dimensional real-space with
coordinates (R,S), i.e. we consider

ψ = eR+iS , ψ = eR−iS , (73)
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viz a viz φ = eR+S , φ̆ = eR−S , with ψψ̄ = φφ̆, then for a wave-function differ-
entiable in t and twice-differentiable in the space variables, then, ψ satisfies the
Schroedinger equation if and only if (R,S) satisfy the difference between the
Fokker-Planck equations , i.e.

∂R

∂t
+ g(dSt, dRt) +

1
2
4gSt = 0, (74)

and

V = −∂S
∂t

+H(g, dRt)Rt −
1
2
g(dSt, dSt). (75)

which follows from substituting ψ in the Schroedinger equation and further
dividing by ψ and taking the real part and imaginary parts, to obtain the
former and latter equations, respectively.

Conversely, if we take the coordinate space given by (φ, φ̆), both non-negative
functions, and consider the domainD = D(s, x) = {(s, x) : 0 < φ̆(s, x)φ(s, x)} ⊂
[a, b]×M and define R = 1

2 lnφφ̆, S = 1
2 lnφ

φ̆
, with R,S having the same differen-

tiabilty properties that previously ψ, then φ = eR+S satisfies in D the equation

∂φ

∂t
+H(g, 0)φ+ cφ = 0, (76)

if and only if

−c = [−∂S
∂t

+H(g, dRt)Rt −
1
2
g(dSt, dSt)]

+ [
∂R

∂t
+H(g, dRt)St] + [2

∂S

∂t
+ g(dSt, dSt)]. (77)

while φ̆ = eR−S satisfies in D the equation

−∂φ
∂t

+H(g, 0)φ̆+ cφ̆ = 0, (78)

if and only if

−c = [−∂S
∂t

+H(g, dRt)Rt −
1
2
g(dSt, dSt)]

− [
∂R

∂t
+H(g, dRt)St] + [2

∂S

∂t
+ g(dSt, dSt)]. (79)

Notice that φ, φ̆ can be both negative or positive. So if we define ψ = eR+iS , it
then defines in weak form the Schroedinger equation in D with

V = −c− 2
∂S

∂t
− g(dSt, dSt). (80)
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Remarks. We note that from eq. (80) follows that we can choose S in a way
such that either c is independent of S and thus V is a potential which is non-
linear in the sense that it depends on the phase of the wave function ψ and thus
the Schroedinger equation with this choice becomes non-linear dependent of ψ,
or conversely, we can make the alternative choice of c depending non-linearly
on S, and thus the creation-annihilation of particles in the diffusion equation is
non-linear, and consequently the Schroedinger equation has a potential V which
does not depend on ψ. It is important for further developments in this article
that the non-linear Schroedinger equation can be turned into the iso-linear iso-
Schroedinger equation by taking the non-linear terms of the potential into the
isotopic generalized unit. Indeed, the recovery of linearity in isohilbert space is
achieved by the embedding of the nonlinear terms in the isounit as shown in
[17]; see eqs. (3.4.42) and (3.4.43).

4.1 Santilli-Lie Isotopies of the Differential Calculus and
Metric Structures, and the Iso-Schroedinger Equation

To present the iso-Schroedinger equation, we need the Santilli-Lie-isotopic
differential calculus [16,17] and the isotopic lift of manifolds, the so-called iso-
manifolds, due to Tsagas and Sourlas [20]; we shall follow here the notations of
Section 3.2 above. We start by considering the manifold M to be a vector space
with local coordinates, which for simplicity we shall from now fix them to be
a contravariant system, x = (xi), i = 1, . . . , n, unit given by I = diag(1, . . . , 1)
and metric g which we assumed diagonalized. We shall lift this structure to a
vector space M̂ provided with isocoordinates x̂, isometric Ĝ and defined on the
isonumber field F̂ , where F can be the real or complex numbers; we denote this
isospace by M̂(x̂, Ĝ, F̂ ). The isocoordinates are introduced by the transforma-
tion x 7→ U × x× U† = x× Î := x̂. To introduce the contravariant isometric Ĝ
we start by considering the transformation 5

g 7→ U × g × U† = Î × g := ĝ. (81)

Yet from the Definition 3.2.3 follows that the isometric is more properly de-
fined by Ĝ = ĝ × Î. Thus we have a transformed M(x, g, F ) into the isospace
M̂(x̂, Ĝ, F̂ ). Thus the projection on M(x, g, F ) of the isometric in M̂(x̂, Ĝ, F̂ )
is defined by a contravariant tensor, ĝ = (ĝij) with components

ĝij = (Î × g)ij . (82)

If we take Î = ψ2(x)× I we then retrieve the Weyl scale transformations, with
ψ a scale field depending only on the coordinates of M . If we start with g
being the Euclidean or Minkowski metrics, we obtain the iso-Euclidean and iso-
Minkowski metrics; in the case we start with a general metric as in GR, we

5We shall assume, as usual, a diagonal metric.
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obtain Isorelativity. We shall now proceed to identify the isotopic lift of the
noise tensor σ which verifies eq. (9), i.e. σ×σ† = g. The non-unitary transform
of (a diagonalized) σ is given by

σ 7→ U × σ × U† = σ × Î := σ̂. (83)

Then,
σ̂×̂σ̂ = σ × Î × T̂ × (σ × Î)† = (σ × σ†)× Î = g × Î = ĝ. (84)

Thus the isotopic lift of the noise tensor defined on M̂(x̂, Ĝ, R̂) is given by
σ̂ = σ × Î which on projection to M(x̂, Ĝ, R) we retrieve σ. We know follow
the notations and definitions of Section 3.2.5 for the isotopic differential, and
for isofunctions. We introduce the isotopic gradient operator of the isometric Ĝ
(the Ĝ-gradient, for short), ̂gradĜ applied to the isotopic lift f̂(x̂) of a function
f(x) is defined by ̂gradĜf̂(x̂)(v̂) = Ĝ(d̂f̂(x̂)̂,v̂), (85)

for any vector field v̂ ∈ Tx̂(M̂), x̂ ∈ M̂ ; we have denoted the inner product
as ,̂ to stress that the inner product is taken with respect to the product in
F̂ . Hence, the operator ̂gradĜf̂(x̂) can be thought as the isovector field on the
tangent manifold to M̂(x̂, Ĝ, F̂ ) defined by

Ĝαβ×̂ ∂̂f̂(x̂)

∂̂x̂α
×̂ ∂̂

∂̂x̂β
= ĝαβ×̂ ∂̂f̂(x̂)

∂̂x̂α
×̂ ∂̂

∂̂x̂i
× Î . (86)

Therefore, the projection on M̂(x̂, ĝ, F ) of the Ĝ-gradient vector field of f̂(x̂) is
the vector field with components

ĝαβ×̂ ∂̂f̂(x̂)

∂̂x̂α
= ĝαβ×̂ ∂̂f̂(x̂)

∂̂x̂α
. (87)

This will be of importance for the determination of the drift vector field of the
diffusion linked with the Santilli- iso-Schroedinger equation. We finally define
the isolaplacian as

4̂ĝ = ĝαβ×̂D̂ ∂̂

∂̂x̂α
×̂D̂ ∂̂

∂̂x̂β

(88)

Here D̂ ∂̂

∂̂x̂α
is defined accordingly with Definition 3.2.13 above, by (c.f. eq. (6)

above)

D̂ ∂̂

∂̂x̂α
X̂β =

∂̂X̂β

∂̂x̂β
+

{̂
β

γα

}
×̂X̂γ , (89)

and hence it is the isocovariant differential with respect to the Levi-Civita iso-
connection with isoChristoffel coefficients{̂

α

βγ

}
=

1̂
2̂
(
∂̂

∂̂x̂β
ĝνγ +

∂̂

∂̂x̂γ
ĝβν −

∂̂

∂̂x̂ν
ĝβγ)×̂ĝαν . (90)
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We remark that from Observations 1 follows that alternatively we can define
the more simpler laplacian by taking instead

4̂ĝ = ĝαβ×̂ ∂̂

∂̂x̂α
×̂ ∂̂

∂̂x̂β
. (91)

In both cases we take σ̂ for the corresponding isonoise term in the isodiffusion
representation. The latter definition of the isolaplacian differs from the original
one introduced in [20].

4.2 Diffusions and the Heisenberg Representation

Up to now we have set our theory in terms of the Schroedinger represen-
tation, since the original setting for this theory has to do with scale transfor-
mations as introduced by Einstein in his last work [7] while it was recognized
previously by London that the wave function was related to the Weyl scale
transformation [48], and these scale fields turned to be in the non-relativistic
case, nothing else than the wave function of Schroedinger equation, both in the
linear and the non-linear cases. Historically the operator theory of QM was
introduced before the Schroedinger equation, who later proved the equivalence
of the two. The ensuing dispute and rejection by Heisenberg of Schroedinger’s
equation is a dramatic chapter of the history of QM [35]. It turns out to be
the case that we can connect the Brownian motion approach to QM and the
operator formalism due to Heisenberg and Jordan, and its isotopic lift presented
in Section 3.4.

Let us define the position operator as usual and the momentum operator by

qk = xk, pDk = σ × ∂

∂xk
, (92)

which we call the diffusion quantization rule (the subscript D denotes diffusion)
since we have a representation different to the usual quantization rule

pk = −i× ∂

∂xk
, (93)

with σ = (σα
a ) the diffusion tensor verifying (σ × σ†)αβ = gαβ and substitute

into the Hamiltonian function

H(p, q) =
1
2

d∑
k=1

(pk)2 + v(q), (94)

this yields the formal generator of a diffusion semigroup in C2(Rd) or L2(Rd)
which in our previous notation is written as H(g, 0) + v. Thus, an operator
algebra on C2(Rn) or L2(Rn) together with the postulate of the commutation
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relation (instead of the usual commutator relation of quantum mechanics [p, q] =
−i× I)

[pD, q] = pD × q − q × pD = σ × I (95)

this yields the diffusion equation

∂φ

∂t
× φ+

1
2

d∑
k=1

(σ
∂

∂xα
)2 × φ+ v × φ = 0, (96)

which coincides with the diffusion eq. (54) provided that c = v. Thus, in
this approach, the operator formalism and the quantization postulates, allow
to deduce the diffusion equation. If we start from either the diffusion process
or the RCW geometry, without any quantization conditions we already have
the equations of motion of the quantum system which are non other than the
original diffusion equations, or equivalently, the Schroedinger equations. We
stress the fact that these arguments are valid for both cases relative to the
choice of the potential function V , i.e. if it depends nonlinearly on the wave
function ψ, or acts linearly by multiplication on it. Further below, we shall
use this modification of the Heisenberg representation of QM by the previous
Heisenberg type representation for diffusion processes, to give an account of the
diffusion processes that are associated with HM. This treatment differs from our
original (inconsistent with respect to HM, as it turned to be proved in the later
findings by Prof. Santilli) treatment of the relation between RCW geometries
and diffusions presented in [29] in incorporating the isotopic lift of all structures.

Let us frame now isoquantization in terms of diffusion processes. Define
isomomentum, p̂D, by

p̂Dk = σ̂×̂ ∂̂

∂̂x̂k
, with σ̂ = σ × Î , (97)

so that the kinetic term of the iso-Hamiltonian is

p̂D×̂p̂†D = σ̂×̂σ̂†×̂ ∂̂

∂̂x̂
×̂ ∂̂

∂̂x̂

= ĝ×̂ ∂̂

∂̂x̂
×̂ ∂̂

∂̂x̂
= 4̂ĝ (98)

We finally check the consistency of the construction by proving that it can be
achieved via the non-unitary transformation

pDj
7→ U × pDj

× U† = U × σ × ∂

∂xj
× U†

= σ × Î × T̂ × Î × ∂

∂xj
= σ̂×̂ ∂̂

∂̂x̂j
= p̂Dj . (99)
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Note that we have achieved this isoquantization in terms of the following trans-
formations: Firstly, we carried out the transformation

p = −i× ∂

∂x
→ pD := σ × ∂

∂x
, (100)

to further produce its isotopic lift

p̂D = σ̂×̂ ∂̂

∂̂x̂
. (101)

Whenever the original diffusion tensor σ is the identity I, from eq. (9) follows
that the original metric g is Euclidean, we reach compatibility of the diffusion
quantization with the Santilli-iso-Heisenberg representation given by taking the
non-unitary transformation on the canonical commutation relations, which are
given by

[q̂i ,̂p̂j ] = î×̂δ̂i
j = i× δi

j × Î , (102)

together with

[r̂i ,̂r̂j ] = [p̂î,p̂j ] = 0, (103)

with the Santilli-iso-quantization rule [16,17]

p̂j = −ı̂×̂ ∂̂

∂̂x̂j
. (104)

Thus, from the quantization by the diffusion representation we retrieve the
Santilli-iso-Heisenberg representation, with the difference that the diffusion noise
tensor in the above construction need not be restricted to the identity.

Finally, we consider the isoHamiltonian operator

Ĥ =
1̂

2̂×̂m̂
×̂p̂2̂ + V̂0(t̂, x̂) + V̂k(t̂, v̂)×̂v̂k, (105)

where p̂ may be taken to be given either by the Santilli isoquantization rule

p̂k×̂|ψ̂ >= −î×̂ ∂̂

∂̂x̂k
×̂|ψ̂ >, (106)

or by the diffusion representation p̂D. V̂0(t̂, x̂) and V̂k(t̂, v̂) are potential iso-
functions, the latter dependent on the isovelocities. Then the iso-Schroedinger
equation (or Schroedinger-Santilli isoequation) [16,17] is

î×̂ ∂̂

∂̂t̂
|ψ̂ >= Ĥ×̂|ψ > = Ĥ(t̂, x̂, p̂)× T̂ (t̂, x̂, ψ̂, ∂̂ψ̂, . . .)× |ψ̂ >, (107)

where the wave isofunction ψ̂ is an element in (Ĥ, < |×̂| >, Ĉ(ĉ, +̂, ×̂)) satisfies

Î×̂|ψ̂ >= |ψ̂ > .
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4.3 Hadronic Mechanics and Diffusion Processes

Finally, the components of drift isovector field, projected on M̂(x̂, ĝ, R) in
the isotopic lift of eq. (63) is given by eq. (87) with f̂ = l̂nφ̂, where φ̂(x̂) =
êR̂(x̂)+Ŝ(x̂) is the diffusion wave associated to the solution ψ̂(x̂) = êR̂(x̂)+iŜ(x̂) of

the iso-Schroedinger equation, and its adjoint wave is ˘
φ̂(x) = êR̂(x)−Ŝ(x). Hence,

the drift isovector field has components

ĝαβ(x̂)×̂ ∂̂ l̂nφ̂(x̂)

∂̂x̂α
= ĝαβ(x̂)×̂ ∂̂

∂̂x̂α
(R̂t̂+̂St̂)(x̂), (109)

Finally, we shall write the isotopic lift of the stochastic differential equation for
the iso-Schroedinger eq. (107). Applying the non-unitary transformation to eq.
(63), we obtain the iso-equation on M̂(x̂, Ĝ, R̂) for X̂t̂ given by

dX̂i
t̂

= ((ĝαβ×̂ ∂̂

∂̂x̂α
(R̂t̂+̂St̂))(X̂t̂)×̂d̂t̂+ σ̂i

j(X̂t̂)×̂dŴ
j

t̂
, (110)

with dŴt̂ = Ŵ (t̂+̂d̂t̂)−̂Ŵ (t̂) the increment of a iso- Wiener process Ŵt̂ =
(Ŵ 1

t̂
, . . . , Ŵm

t̂
) with isoaverage equal to 0̂ and isocovariance given by δ̂i

j×̂t̂; i.e.,

1̂/̂(4̂×̂π̂×̂t̂)m̂/̂2̂

∫̂
ŵi×̂ê−ŵ2̂/̂4̂×̂t̂2̂×̂d̂ŵ = 0̂, ∀i = 1, . . . ,m

(111)

and

1̂/̂(4̂×̂π̂×̂t̂)m̂/̂2̂

∫̂
ŵi×̂ŵj×̂ê−ŵ2̂/̂4̂×̂t̂2̂×̂d̂ŵ = δ̂i

j×̂t̂, ∀i, j = 1, . . . ,m

(112)

and
∫̂

denotes the isotopic integral defined by
∫̂
d̂x̂ = (

∫
T̂ × Î × dx) × Î =

(
∫
dx)× Î = x̂. Thus, formally at least, we have

X̂t̂ = X̂0̂+̂
∫̂ t̂

0̂

(ĝαβ×̂ ∂̂

∂̂x̂α
(R̂ŝ+̂Sŝ))(X̂ŝ)×̂d̂ŝ+

∫̂ t̂

0̂

σ̂i
j(X̂ŝ)×̂dŴ j

ŝ . (113)

The integral in the first term of eq. (113) is an isotopic lift of the usual Riemann-
Lebesgue integral [16d,20a], while the second one is the isotopic lift of a stochas-
tic Itô integral; we shall not present here in detail the definition of this last term,
which follows from the notions of convergence in the isofunctional analysis elab-
orated by Kadeisvili [19] (see Section 3.2.6), and the usual definition of Itô
stochastic integrals [9,14,26], nor the presentation of analytical conditions for
their convergence which follows in principle from the isotopic lift of the usual
conditions.
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4.4 The Extension to The Many-body Case

Up to know we have presented the case of the Schroedinger equation for
an ensemble of one-particle systems on space-time. Of course, our previous
constructions are also valid for the case of an ensemble of interacting multipar-
ticle systems, so that the dimension of the configuration space is 3d + 1, for
indistinguishable d particles; the general case follows with minor alterations. If
we start by constructing the theory as we did for an ensemble of one-particle
systems (Schroedinger’s cloud of electrons), we can still extend trivially to the
general case, by considering a diffusion in the product configuration manifold
with coordinates Xt = (X1

t , . . . , X
d) ∈Md, where Md is the d Cartesian prod-

uct of three dimensional space with coordinates Xi
t = (x1,i

t , x2,i
t , x3,i

t ) ∈ M , for
all i = 1, . . . , d. The distribution of this is µt = EQ ◦X−1

t , which is a probability
density inMd. To obtain the distribution of the system on the three-dimensional
space M , we need the distribution of the system Xt:

Ux
t :=

1
d

d∑
i=1

δxi . (114)

which is the same as

Ux
t (B) =

1
d

d∑
i=1

1B(Xi
t), (115)

where 1B(Xi
t) is the characteristic system for a measurable set B , equal to 1 if

Xi
t ∈ B, for any i = 1 . . . , d and 0 otherwise. Then, the probability density for

the interacting ensembles is given by

µx
t (B) = EQ[Ux

t (B)], (116)

where EQ is the mean taken with respect to the forward Kolmogorov represen-
tation presented above, is the probability distribution in the three-dimensional
space; see [14]. Therefore, the geometrical-stochastic representation in actual
space is constructable for a system of interacting ensembles of particles. Thus
the criticism to the Schroedinger equation by the Copenhagen school, as to the
unphysical character of the wave function since it was originally defined on a
multiple-dimensional configuration space of interacting system of ensembles, is
invalid [35].

5 Possible Empirical Evidence and Conclusions

We have shown that the Schroedinger and isoSchroedinger equation have
an equivalent representation in terms of diffusion processes. This can be further
extended to hadronic chemistry, as shown in the previous section. This is an uni-
versal phenomenae since the applicability of the Schroedinger equation does not
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restrict to the microcospic realm, as already shown in the astrophysical theory
due to Nottale [11]; this universality is associated with the fact that the Planck
constant (or equivalently, the diffusion constant) is multivalued, or still, it is
context dependent, inasmuch as the velocity of light has the same feature [17].
In the case of HM this can be seen transparently in the fact that the isotopic
unit plays the role, upon quantization, of the Planck constant as can seen in
eqs. (107, 108) 6, or furthermore, by its product with the noise tensor of the un-
derlying Brownian motions.In the galactic scales, this may explain the red-shift
without introducing a big-bang hypothesis [17,18]. An identical conclusion was
reached by Arp in considering as a theoretical framework the Le Sage’s model
of a Universe filled with a gas of particles [40], in our theory, the zero-point
fluctuations described by the Brownian motions defined by the wave functions,
as well as by viscous fluids, spinor fields, or electromagnetic fields [2] (and which
one can speculate as related to the so-called dark energy problem). A similar
view has been proposed by Santilli in which the elementary constituents are
the so-called aetherinos [59], while in Sidharth’s work, they appear to be ele-
mentary quantized vortices related to quantum-mechanical Kerr-Newman black
holes [29]. Thus, whether we examine the domains of linear or non-linear quan-
tum mechanics, or still of hadronic mechanics, vortices and superconductivity
(which is the case of the Rutherford-Santilli model of the neutron which is de-
rived from the previous constructions) appear as universal coherent structures;
superconductivity is usually related to a non-linear Schroedinger equation with
a Landau-Ginzburg potential, which is just an example of the Brownian motions
related to torsion fields with further noise related to the metric. Furthermore,
atoms and molecules have spin-spin interactions which will produce a contribu-
tion to the torsion field; we have seen already that the torsion geometry exists
in the realm of hadronic chemistry, since we can extend the construction to
the many-body case. In distinction with the usual repulsive Coulomb potential
in nuclear physics, the isotopic deformations of the nuclear symmetries yield
attractive potentials such as the Hulten potential, which in the range of 10−13

cm. yields the usual potential [15-20,51] without the need of introducing any
sort of parameters or extra potentials. In contrast with the ad-hoc postulates of
randomness in the fusion models which are considered in the usual approaches
[32,33], in the present work randomness is intrinsic to space-time or alterna-
tively a by product of it, and in the case of HM, these geometries incorporate
at a foundational level, a generalized unit which incorporates all the features of
the fusion process itself: the non-canonical, non-local and non-linear overlap-
ping of the wave functions of the ensembles which correspond to the separate
ensembles under deformable collisions in which the particles lose their point-
like structure, or in a hypercondensed plasma state, where the dynamics of the
process may have a random behavior; outside of the domain of 10−13 cm., the
hadronic fluctuations associated to the isolinear isoSchroedinger equation decay

6See Postulate 3.4.1.
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to the quantum fluctuations of the linear Schroedinger equation.
There are already empirical findings that may lead to validate the present

view. In the last fifty years, a team of scientists at the Biophysics Institute of the
Academy of Sciences of Russia, directed by S. Shnoll (and presently developed
in a world net which includes Roger Nelson, Engineering Anomalies Research,
Princeton University, B. Belousov, International Institute of Biophysics, Neuss
(Germany), Dr. Wilker, Max-Planck Institute for Aeronomy, Lindau, and oth-
ers), have carried out tens of thousands of experiments of very different nature
and energy scales (α decay, biochemical reactions, gravitational waves antenna,
etc.) in different points of the globe, and carried out a software analysis of the
observed histograms and their fluctuations, to find out an amazing fit which
is repeated with regularity of 24 hours, 27 days and the duration of a sidereal
year. In these experiments the fine spectrum of their measurements reveal a non-
random pattern. At points of Earth with the same local hour, these patterns
are reproduced with the said periodicity. The only thing in common to these ex-
periments is that they are occur in space-time, which has lead to conclude that
they stem from space-time fluctuations, which may further be associated with
cosmological fields. Furthermore, the histograms reveal a fractal structure; this
structure is interpreted as appearing from an interference phenomena related
to the cosmological field; we recall that diffusion processes present interference
phenomena alike to , say, the two-slit experiment.7. Measurements taken with
collimators show fluctuations emerging from the rotation of the Earth around
its axis or its circumsolar orbit, showing a sharp anisotropy of space. Further-
more,it is claimed that the spatial heterogeinity occurs in a scale of 10−13 cm.,
coincidently with the scale of the strong interactions [62]. Contrary to common
belief, the Michelson-Morley did not provide a final dismissal of the aether,
while Einstein in the course of his life supported the idea of its existence [64].
Thousands of interferometry experiments were carried out by D. Miller, Allais
and others, and contemporarily very diverse setups have proved that there is a
space anisotropy [63]. As a closing remark we would like to recall that Planck
himself proposed the existence of ensembles of random phase oscillators having
the zero-point structure as the basis for quantum physics [56]. Thus, the ape-
iron would be related to the Brownian motions which we have presented in this
work, and define the space and time geometries, or alternatively, are defined by
them. So we are back to the idea due to Clifford, that there is no-thing but
space and time configurations, instead of a separation between substratum and
fields and particles appearing on it. Furthermore, what we perceive to be void,
is the hyperdense source of actuality. The same conception has been proposed

7This fractal structure has been found to follow the pattern of the logarithmic Muller
fractal, which is associated with the existence of a global scale for all structures in the Universe;
see H. Muller, Free Energy - Global Scaling, Raum& Zeit Special 1, Ehlers-Verlag GmbH, ISBN
3-934-196-17-9; 2004. This leads to reinforce the thesis of time as an active field. Furthermore,
the space and time Brownian motions can exist, in principle, in the different space and time
scales warranted by these global scales.
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by Prof. Santilli in the main body of this volume.
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