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Abstract

Using the spinor differential operator representation of U(3, 2) to
explore the hidden symmetries of the complex space-time U(3, 2)/U(3, 1)×
U(1) leads to an interpretation of this complex space-time as excited
states of Anti-de Sitter space-time. This in turn leads to new Lie Alge-
braic Quantum Field Theory and a mathematical model of the internal
structure of elementary particles as oscillations of complex space-time.
This is a quantum theory of gravity which satisfies Einstein’s criteria
for a unified field theory.

PACS: 12.60.-i Models of particles and fields beyond the standard model
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1 Introduction

John Wheeler [57] claimed that:

Physical law expresses itself through group theory and symme-
try, but group theory and symmetry hide the machinery beneath
that physical law.

In this section, a model of particle interactions is analyzed using the Lie
Algebra u(3, 2) to expose the machinery beneath.

Most physicists would probably agree with this statement by A. Salam
[49]:

Throughout the history of quantum theory, a battle has raged
between the amateurs and professional group theorists. The am-
ateurs have maintained that everything one needs in the theory
of groups can be discovered by the light of nature provided one
knows how to multiply two matrices. In support of this claim,
they of course, justifiably, point to the successes of that prince of
amateurs in this field, Dirac, particularly with the spinor repre-
sentations of the Lorentz group.

As an amateur myself, I strongly believe in the truth of the
non-professionalist creed. I think perhaps there is not much one
has to learn in the way of methodology from the group theorists
except caution. But this does not mean one should not be aware
of the riches which have been amassed over the course of years
particularly in that most highly developed of all mathematical
disciplines - the theory of Lie groups.

Since Salam refered to Dirac as the “prince of amateurs” it seems fitting
to start with a very amateurish paper by Dirac. Dirac [6] attempted to ob-
tain “the de-Sitter analogues of some of the important equations of physics.”
Unfortunately, Dirac made so many mathematical mistakes that the equa-
tions he “derived” are devoid of meaning. One would expect that an error
of this magnitude made so long ago would have been exposed and so would
be irrelevant today. Unfortunately this is not the case.

I was motivated to understand what Dirac had done on anti-de Sitter
space, SO(3, 2)/SO(3, 1) since I had suggested using the complex space time
SU(3, 2)/SU(3, 1)× U(1) in a unification program [33].
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2 Dirac’s Mistakes

De Sitter space is the submanifold of R5 defined by
(1) x2

1 + x2
2 + x2

3 − x2
4 + x2

5 = R2

(Equation numbers in parenthesis follow Dirac’s numbering)
The manifold now known as Anti-de Sitter space, which Dirac called “a

rather similar space” is:
(2) x2

1 + x2
2 + x2

3 − x2
4 − x2

5 = −R2

And Dirac states:

. . . most of our work will apply equally well to either space. We
can take this into account by working with five coordinates sat-
isfying the symmetrical equation

(3) x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = R2

and supposing x4 to be pure imaginary when we want to have
space (1), and x4, x5 and R to be pure imaginary when we want
to have space (2). We shall write (3) in the contracted form

(4) xµxµ = R2

the suffix µ running from 1 to 5.

Now while these substitutions work perfectly well in (3), they do not work
in most of the other formulas which Dirac considers. For clarity, I will not
attempt to treat both cases simultaneously and will only treat case (2), thus
“Dirac’s substitution” will refer to replacing x4 by ix4 and x5 by ix5. Similar
comments would apply to case (1).

Dirac correctly points out that

The only processes of differentiation which it will have a mean-
ing to apply to a physical function will be those referring to differ-
entiations along directions in the de-Sitter space. The operators
expressing such differentiations will be of the form

(5) aµ
∂

∂xµ

So far, so good. But then Dirac claims that

. . . the aµ are functions of the coordinates x of the point where
the differentiation is performed, satisfying

(6) aµxµ = 0.

This is Dirac’s first mistake. Dirac goes on to say that:
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These operators may be characterized by the condition that
they commute with the left-hand side of (4). The most funda-
mental of them are

(7) xµ∂ν − xν∂µ

corresponding to the infinitesimal rotations of the de-Sitter space.

What he should have said was the operators (7) acting on (4) yield zero.
The “infinitesimal rotations of R5” form the Lie algebra so(5), a basis of

which is:

x1
∂

∂x2

− x2
∂

∂x1

x1
∂

∂x3

− x3
∂

∂x1

x1
∂

∂x4

− x4
∂

∂x1

x1
∂

∂x5

− x5
∂

∂x1

x2
∂

∂x3

− x3
∂

∂x2

x2
∂

∂x4

− x4
∂

∂x2

x2
∂

∂x5

− x5
∂

∂x2

x3
∂

∂x4

− x4
∂

∂x3

x3
∂

∂x5

− x5
∂

∂x3

x4
∂

∂x5

− x5
∂

∂x4

Since each of these operators acting on (x2
1 +x2

2 +x2
3 +x2

4 +x2
5) yields zero

the flows generated by these vector fields remain on the sphere they started
on.

The “infinitesimal rotations of anti-deSitter space” are the Lie algebra
so(3, 2), a basis of which is:
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X12 = x1
∂

∂x2

− x2
∂

∂x1

X13 = x1
∂

∂x3

− x3
∂

∂x1

X14 = x1
∂

∂x4

+ x4
∂

∂x1

X15 = x1
∂

∂x5

+ x5
∂

∂x1

X23 = x2
∂

∂x3

− x3
∂

∂x2

X24 = x2
∂

∂x4

+ x4
∂

∂x2

X25 = x2
∂

∂x5

+ x5
∂

∂x2

X34 = x3
∂

∂x4

+ x4
∂

∂x3

X35 = x3
∂

∂x5

+ x5
∂

∂x3

X45 = x4
∂

∂x5

− x5
∂

∂x4

Note that each of these operators acting on (x2
1 +x2

2 +x2
3−x2

4−x2
5) yields

zero.
Applying Dirac’s substitution to the basis of so(5) we obtain:

x1
∂

∂x2
− x2

∂
∂x1

=⇒ unchanged

x1
∂

∂x3
− x3

∂
∂x1

=⇒ unchanged

x1
∂

∂x4
− x4

∂
∂x1

=⇒ −i(x1
∂

∂x4
+ x4

∂
∂x1

)

x1
∂

∂x5
− x5

∂
∂x1

=⇒ −i(x1
∂

∂x5
+ x5

∂
∂x1

)

x2
∂

∂x3
− x3

∂
∂x2

=⇒ unchanged

x2
∂

∂x4
− x4

∂
∂x2

=⇒ −i(x2
∂

∂x4
+ x4

∂
∂x2

)

x2
∂

∂x5
− x5

∂
∂x2

=⇒ −i(x2
∂

∂x5
+ x5

∂
∂x2

)

x3
∂

∂x4
− x4

∂
∂x3

=⇒ −i(x3
∂

∂x4
+ x4

∂
∂x3

)

x3
∂

∂x5
− x5

∂
∂x3

=⇒ −i(x3
∂

∂x5
+ x5

∂
∂x3

)

x4
∂

∂x5
− x5

∂
∂x4

=⇒ unchanged
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We put in the details for one of the calculations:

x3
∂

∂x5

− x5
∂

∂x3

=⇒ x3
∂

∂ix5

− ix5
∂

∂x3

= −i(x3
∂

∂x5

+ x5
∂

∂x3

)

Thus, the Dirac substitution has only four of the ten generators correct, the
others are the non-compact generators of so(3, 2) multiplied by -i. Recall that
multiplication by i changes a compact generator into a noncompact generator
and vice-versa [25]. Again, multiplication by i takes us out of the tangent
space, which is a real vector space.

The tangent space of anti-de Sitter space is spanned by:

x1
∂

∂x5

+ x5
∂

∂x1

x2
∂

∂x5

+ x5
∂

∂x2

x3
∂

∂x5

+ x5
∂

∂x3

x4
∂

∂x5

− x5
∂

∂x4

In Dirac’s version, the corresponding vectors are

−i(x1
∂

∂x5

+ x5
∂

∂x1

)

−i(x2
∂

∂x5

+ x5
∂

∂x2

)

−i(x3
∂

∂x5

+ x5
∂

∂x3

)

x4
∂

∂x5

− x5
∂

∂x4

Only the last of these is actually in the tangent space.
Dirac’s equation (9) is the same as (6) with the same mistake. In order

to obtain his equation (17) Dirac differentiates (9) , which is wrong to begin
with, with respect to xν which is not allowed (since ∂ν is not in the tangent
space), thus compounding his errors.
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Dirac’s equation (12) is the quadratic Casimir operator of so(3, 2) acting
on ρ2. This is one equation which is correct with Dirac’s substitution.

Dirac’s equations (15), (16) and (22) involve differentiation by ∂
∂xµ

which

is not in the tangent space of anti-de Sitter space and the equations are thus
not valid. In his equation (24), Dirac repeats the same sign errors he made
in (7).

The remainder of Dirac’s paper builds on the errors pointed out above.
Even amateurs need to be careful. Unfortunately the effects of Dirac’s mis-
take still resonates through the Physics literature, Fronsdal [16](equation
4.2) misidentified the basis of so(5) as the basis for so(3, 2). Halpern [21]
used several of Dirac’s erroneous equations.

The basic problem is as Salam points out:

I shall state theorems; and with a physicist’s typical unconcern
rarely, if ever, shall I prove these.

When generations of articles pass without proofs, errors will inevitably
appear. Without proofs, then, the erroneous statements become accepted as
true, finally choking further progress.

3 The Preliminary Problem

An attempt to correct Dirac’s mistakes and find the correct equations on
QAdS led to the following.

The Lie Group U(2) is the group of 2×2 complex matrices which preserve
the form

f = z1z̄1 + z2z̄2

The dimension of U(2) is 4.
Set

zI = xI + iyI

then
zI z̄I = (xI + iyI)(xI − iyI) = x2

I + y2
I

so,
f = x2

1 + y2
1 + x2

2 + y2
2

which is the form preserved by SO(4) with dimension 6. What happened
to the 2 missing generators in the Lie algebra u(2)? Our first goal is to
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find them. The investigation will take us on a detour into some unfamiliar
territory which has some landmarks which are interesting in their own right.
We will pause along the way to make some observations. This trip takes us
to the author’s U(3, 2) theory of matter, exposing the here-to-fore hidden
substructure of elementary particles. (The answer, as the expert will know is
that the four generators are holomorphic and the other two are not. When we
get to the complex space-time U(3, 2)/U(3, 1)×U(1) the question will become
relevant: do we want to restrict ourselves to the holomorphic generators or
allow the other symmetries?)

As will be shown in detail later, QAdS is a complex spacetime. We want
to deal with the tangent spaces T 1,0 and T 0,1. Since we want to use the
Lie algebra to construct differential equations, we need the representation of
u(3, 2) in terms of differential operators.

4 Nonclassical Lie Algebras

Let f : Rn → R be a C∞ function. Define

Zf = {X ∈ T (Rn)|Xf = 0}

This is the idea behind the Killing fields in General Relativity, where f
would be a space-time metric. These vector fields were called kinematical
operators by Fubini, Hanson and Jackiw [17].

Theorem: Zf is a Lie algebra.[32]
Proof: If X, Y ∈ Zf , so Xf = 0 and Y f = 0 then

[X, Y ]f = XY f − Y Xf = 0.

Thus Zf is closed as a subalgebra of T (Rn).
Corollary: Zf is a module over C∞(Rn)
Proof: If X ∈ Zf and ψ ∈ C∞(Rn) then ψXf = 0 thus ψX ∈ Zf

Given an arbitrary f, we would like to have a method of finding Zf . That
turns out to be rather easy.

Theorem (The Recipe): If f ∈ C∞(Rn) then(
∂f

∂xI

)
∂

∂xJ

−
(
∂f

∂xJ

)
∂

∂xI

∈ Zf (1)

Proof: Direct calculation.
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Collary: There are (
n
2

) such operators.

Let f : Rn → R be a C∞ function. Define

Sf = {X ∈ T (Rn)| Xf = αf for some α ∈ C}

Theorem: Sf is a Lie algebra.
Proof: If X, Y ∈ Zf , so Xf = αf and Y f = βf then

[X,Y ]f = XY f − Y Xf = Xβf − Y αf = αβf − βαf = 0

Corollary: Zf is an ideal in Sf .
Example:
In classical Hamiltonian mechanics, the Hamiltonian vector field gener-

ated by H:

XH =
n∑

i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)

is the sum of operators of this form [1, 2].
Example: In R3, let f = x3

1 + x3
2 + x3

3.
Then using the Recipe we obtain a basis for Zf :

{x2
2

∂

∂x1

− x2
1

∂

∂x2

, x2
1

∂

∂x3

− x2
3

∂

∂x1

, x2
3

∂

∂x2

− x2
2

∂

∂x3

}

Let

A = x2
2

∂

∂x1

− x2
1

∂

∂x2

B = x2
1

∂

∂x3

− x2
3

∂

∂x1

C = x2
3

∂

∂x2

− x2
2

∂

∂x3

then
[A,B] = 2x2C [B,C] = 2x3A [C,A] = 2x1B

In order for a Lie algebra to integrate into a Lie group, the bracket of two
elements must be a linear combination of the basis elements, one must have
structure constants, not structure functions. This is a Lie algebra which does
not integrate into a Lie group.

Example: In R3, let f = x1x2x3.
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Then using the Recipe we obtain a basis for Zf :

{x1x2
∂

∂x1

− x2x3
∂

∂x3

, x1x3
∂

∂x3

− x1x2
∂

∂x2

, x3x2
∂

∂x2

− x1x3
∂

∂x1

}

We compute one bracket:

[x1x2
∂

∂x1

− x2x3
∂

∂x3

, x1x3
∂

∂x3

− x1x2
∂

∂x2

]

= x1x2x1
∂

∂x1

− x1x2x2
∂

∂x2

= x1x2

(
x1

∂

∂x1

− x2
∂

∂x2

)
Beginning with these operators, we obtain a rather complicated Lie alge-

braic structure with structure functions.
In order to simplify the brackets, it seems reasonable to divide the first

generator by x2, the second by x1 and the third by x3. We then obtain as a
basis for Zf :

{x1
∂

∂x1

− x3
∂

∂x3

, x3
∂

∂x3

− x2
∂

∂x2

, x2
∂

∂x2

− x1
∂

∂x1

}

These operators commute, showing that the Lie algebra is Abelian, the
structure functions were not essential. This case shows that while the recipe
gives us a start at finding an appropriate basis for the Lie algebra, suitable
multiplications or factorizations may greatly simplify the situation.

Example: In R3, take

f =
(
x4

1 + x4
2 + x4

3

)
The recipe for Zf yields:

x3
2

∂
∂x1
− x3

1
∂

∂x2

x3
3

∂
∂x1
− x3

1
∂

∂x3

x3
3

∂
∂x2
− x3

2
∂

∂x3

We will compute one commutator as a sample:

[x3
2

∂

∂x1

− x3
1

∂

∂x2

, x3
3

∂

∂x1

− x3
1

∂

∂x3

] = 3x2
1

(
x3

3

∂

∂x2

− x3
2

∂

∂x3

)
Again, this is an example of a Lie algebra which does not integrate into

a Lie group.
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5 The Classical Lie algebras

The method developed in the previous section can be applied to obtain the
classical Lie algebras as well.

Example: In R3, let f = x2
1 + x2

2 + x2
3. The recipe yields:

x1
∂

∂x2

− x2
∂

∂x1

x1
∂

∂x3

− x3
∂

∂x1

x2
∂

∂x3

− x3
∂

∂x2

Which we recognize as the standard basis of the Lie algebra so(3). The
Lie algebra so(n) is obtained in the same way.

Example: In R3, let f = x2
1 + x2

2 + x2
3 − c2t2. The recipe yields the

generators of so(3) plus:

x1
∂

∂t
− c2t ∂

∂x1

x2
∂

∂t
− c2t ∂

∂x2

x3
∂

∂t
− c2t ∂

∂x3

This is a basis for the Lorentz algebra.
In order to obtain physics, we need to scale the Lie algebra. This example

shows that scaling the function automatically scales the Lie algebra.
Also relevant are the examples of the rotations of R5 and the symmetries

of de Sitter space and “anti-de Sitter space” discussed above. The operators
representing the Lie algebras of so(n) can be obtained in the same way. The
operator representation of su(n) is the topic of the next few sections.

6 Complex Symmetries

If f = x2
1 + x2

2 + x2
3− x2

4− x2
5, then Zf is isomorphic to the anti-de Sitter Lie

algebra so(3, 2). In [33], I suggested that the group underlying nature was
SU(3, 2) and that SU(3, 2)/SU(3, 1)×U(1) is a complex spacetime (dubbed
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Quantum Anti-deSitter space, QAdS) which in some sense is a complexifica-
tion of Anti-de Sitter space SO(3, 2)/SO(3, 1). Define

ρ2 = z1z̄1 + z2z̄2 + z3z̄3 − z4z̄4 − z5z̄5

A major purpose of this section is to study the relation between Zρ2 , the
tangent space of QAdS and the Lie Algebra u(3, 2). The relation is not as
straight forward as with AdS since the recipe does not distinguish between
the tangent spaces T 1,0 and T 0,1 .

We begin with the preliminary problem: In C2 define

f = z1z̄1 + z2z̄2

Apply the recipe (1) to obtain:

z̄1
∂

∂z̄1

− z1
∂

∂z1

z̄2
∂

∂z1

− z̄1
∂

∂z2

z2
∂

∂z̄1

− z1
∂

∂z̄2

z̄1
∂

∂z̄2

− z2
∂

∂z1

z̄2
∂

∂z̄1

− z1
∂

∂z2

z̄2
∂

∂z̄2

− z2
∂

∂z2

This gives us the 6 operators we were looking for. The problem is that
the recipe does not distinguish between T 1,0 and T 0,1. Instead we must test
each of these operators to see which are in u(2). Recall that u(2) is closed
under the following operation:

1. Take the transpose (interchange the indices i and j)
2. Take the complex conjugate
3. Multiply by -1.
Let us apply this sequence of steps to

z̄2
∂

∂z̄1

− z1
∂

∂z2
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1.

z̄1
∂

∂z̄2

− z2
∂

∂z1

2.

z1
∂

∂z2

− z̄2
∂

∂z̄1

3.

−z1
∂

∂z2

+ z̄2
∂

∂z̄1

Which is what we started with, so this operator is in u(2).
Now we apply the same sequence of steps to:

z̄1
∂

∂z2

− z̄2
∂

∂z1

1.

z̄2
∂

∂z1

− z̄1
∂

∂z2

2.

z2
∂

∂z̄1

− z1
∂

∂z̄2

3.

−z2
∂

∂z̄1

+ z1
∂

∂z̄2

The final result is not what we started with, so this operator is not in
u(2), but it is on our list.

We conclude that the operators in u(2) are those of the form

z̄J
∂

∂z̄I

− zI
∂

∂zJ

Since there are two choices for each of I and J, this yields all 4 of the
basis vectors of u(2). The operators in u(2) segregate the zI from the z̄I .
The operators not in u(2) mix the zI with the z̄I .

Since these operators are close in form to the operator B3 which Naimark
[39] (equation 9.4(8)) presents as an “infinitesimal operator of a spinor repre-
sentation”, it seems that we have arrived at a representation of u(2) in terms
of spinor derivatives. This is not surprising since Nash [40] showed “There
exists an exceptional equivalence of a complex Dirac spinor and a complex
Minkowski space-time vector.”
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7 A Deeper Level

Since the standard representation of u(2) is in terms of xI and yI instead of
zI , we make the change of variables. For the time being, we will ignore the
tangent vectors not in u(2).

The operators in u(2):

u21 = z̄2
∂

∂z̄1

− z1
∂

∂z2

= (x2 − iy2)
(

1

2

)(
∂

∂x1

+ i
∂

∂y1

)
− (x1 + iy1)

(
1

2

)(
∂

∂x2

− i ∂
∂y2

)

=
(

1

2

)(
x2

∂

∂x1

− x1
∂

∂x2

)
+
(

1

2

)(
y2

∂

∂y1

− y1
∂

∂y2

)

+
(
i

2

) [(
x2

∂

∂y1

− y1
∂

∂x2

)
+

(
x1

∂

∂y2

− y2
∂

∂x1

)]

u12 = z̄1
∂

∂z̄2

− z2
∂

∂z1

= (x1 − iy1)
(

1

2

)(
∂

∂x2

+ i
∂

∂y2

)
− (x2 + iy2)

(
1

2

)(
∂

∂x1

− i ∂
∂y1

)

=
(

1

2

)(
x1

∂

∂x2

− x2
∂

∂x1

)
+
(

1

2

)(
y1

∂

∂y2

− y2
∂

∂y1

)

+
(
i

2

) [(
x1

∂

∂y2

− y2
∂

∂x1

)
+

(
x2

∂

∂y1

− y1
∂

∂x2

)]
The following operator acting on ρ2 yields zero, but there are problems

with considering it as a basis element:

z̄1
∂

∂z̄1

− z1
∂

∂z1
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= (x1 − iy1)
(

1

2

)(
∂

∂x1

+ i
∂

∂y1

)
− (x1 + iy1)

(
1

2

)(
∂

∂x1

− i ∂
∂y1

)

=
(
i

2

)(
x1

∂

∂y1

− y1
∂

∂x1

)

The problem is that the operator should be compact while the factor of
i makes it noncompact. We will define:

u11 =

(
x1

∂

∂y1

− y1
∂

∂x1

)

The same comments hold for:

z̄2
∂

∂z̄2

− z2
∂

∂z2

= (x2 − iy2)
(

1

2

)(
∂

∂x2

+ i
∂

∂y2

)
− (x2 + iy2)

(
1

2

)(
∂

∂x2

− i ∂
∂y2

)

=
(
i

2

)(
x2

∂

∂y2

− y2
∂

∂x2

)
We define:

u22 =

(
x2

∂

∂y2

− y2
∂

∂x2

)

8 The matrix generators of u(3,2)

We list the matrix generators of u(3, 2):

γ1 =


i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



γ2 =


0 0 0 0 0
0 i 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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γ3 =


0 0 0 0 0
0 0 0 0 0
0 0 i 0 0
0 0 0 0 0
0 0 0 0 0



γ4 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 i 0
0 0 0 0 0



γ5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 i



X12 =


0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



Y12 =


0 i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



X13 =


0 0 1 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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Y13 =


0 0 i 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0



X14 =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0



Y14 =


0 0 0 i 0
0 0 0 0 0
0 0 0 0 0
−i 0 0 0 0
0 0 0 0 0



X15 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0



Y15 =


0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−i 0 0 0 0



X23 =


0 0 0 0 0
0 0 1 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
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Y23 =


0 0 0 0 0
0 0 i 0 0
0 i 0 0 0
0 0 0 0 0
0 0 0 0 0



X24 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0



Y24 =


0 0 0 0 0
0 0 0 i 0
0 0 0 0 0
0 −i 0 0 0
0 0 0 0 0



X25 =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0



Y25 =


0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 −i 0 0 0



X34 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0
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Y34 =


0 0 0 0 0
0 0 0 0 0
0 0 0 i 0
0 0 −i 0 0
0 0 0 0 0



X35 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0



Y35 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 −i 0 0



X45 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0



Y45 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 i 0



9 The brackets of u(3,2)

The matrices of u(3, 2) satisfy the following commutation relations.

[X12, X13] = −X23
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[X12, X14] = −X24

[X12, X15] = −X25

[X12, X23] = X13

[X12, X24] = X14

[X12, X25] = X15

[X12, X34] = 0

[X12, X35] = 0

[X12, X45] = 0

[X13, X14] = −X34

[X13, X15] = −X35

[X13, X23] = −X12

[X13, X24] = 0

[X13, X25] = 0

[X13, X34] = X14

[X13, X35] = X15

[X13, X45] = 0

[X14, X15] = X45

[X14, X23] = 0

[X14, X24] = X12

[X14, X25] = 0

[X14, X34] = X13

[X14, X35] = 0

[X14, X45] = X15
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[X15, X23] = 0

[X15, X24] = 0

[X15, X25] = X12

[X15, X34] = 0

[X15, X35] = X13

[X15, X45] = −X14

[X23, X24] = −X34

[X23, X25] = −X35

[X23, X34] = X24

[X23, X35] = X25

[X23, X45] = 0

[X24, X25] = X45

[X24, X34] = X23

[X24, X35] = 0

[X24, X45] = X25

[X25, X34] = 0

[X25, X35] = X23

[X25, X45] = −X24

[X34, X35] = X45

[X34, X45] = X35

[X35, X45] = −X34

[Y12, Y13] = −X23

[Y12, Y14] = −X24
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[Y12, Y15] = −X25

[Y12, Y23] = −X13

[Y12, Y24] = −X14

[Y12, Y25] = −X15

[Y12, Y34] = 0

[Y12, Y35] = 0

[Y12, Y45] = 0

[Y13, Y14] = −X34

[Y13, Y15] = −X35

[Y13, Y23] = −X12

[Y13, Y24] = 0

[Y13, Y25] = 0

[Y13, Y34] = −X14

[Y13, Y35] = −X15

[Y13, Y45] = 0

[Y14, Y15] = X45

[Y14, Y23] = 0

[Y14, Y24] = X12

[Y14, Y25] = 0

[Y14, Y34] = X13

[Y14, Y35] = 0

[Y14, Y45] = −X15

[Y15, Y23] = 0

[Y15, Y24] = 0

[Y15, Y25] = X12

22



[Y15, Y34] = 0

[Y15, Y35] = X13

[Y15, Y45] = −X14

[Y23, Y24] = −X34

[Y23, Y25] = −X35

[Y23, Y34] = −X24

[Y23, Y35] = −X25

[Y23, Y45] = 0

[Y24, Y25] = X45

[Y24, Y34] = X23

[Y24, Y35] = 0

[Y24, Y45] = −X25

[Y25, Y34] = 0

[Y25, Y35] = X23

[Y25, Y45] = −X24

[Y34, Y35] = X45

[Y34, Y45] = −X35

[Y35, Y45] = −X34

[X12, Y12] = 2γ1 − 2γ2

[X12, Y13] = −Y23

[X12, Y14] = −Y24

[X12, Y15] = −Y25

[X12, Y23] = Y13

[X12, Y24] = Y14

[X12, Y25] = Y15
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[X12, Y34] = 0

[X12, Y35] = 0

[X12, Y45] = 0

[X13, Y12] = −Y23

[X13, Y13] = 2γ1 − 2γ3

[X13, Y14] = −Y34

[X13, Y15] = −Y35

[X13, Y23] = Y12

[X13, Y24] = 0

[X13, Y25] = 0

[X13, Y34] = Y14

[X13, Y35] = Y15

[X13, Y45] = 0

[X14, Y12] = −Y24

[X14, Y13] = −Y34

[X14, Y14] = −2γ1 + 2γ4

[X14, Y15] = Y45

[X14, Y23] = 0

[X14, Y24] = −Y12

[X14, Y25] = 0

[X14, Y34] = −Y13

[X14, Y35] = 0

[X14, Y45] = Y15

[X15, Y12] = −Y25

[X15, Y13] = −Y35
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[X15, Y14] = Y45

[X15, Y15] = −2γ1 + 2γ5

[X15, Y23] = 0

[X15, Y24] = 0

[X15, Y25] = −Y12

[X15, Y34] = 0

[X15, Y35] = −Y13

[X15, Y45] = Y14

[X23, Y12] = −Y13

[X23, Y13] = Y12

[X23, Y14] = 0

[X23, Y15] = 0

[X23, Y23] = 2γ2 − 2γ3

[X23, Y24] = −Y34

[X23, Y25] = −Y35

[X23, Y34] = Y24

[X23, Y35] = Y25

[X23, Y45] = 0

[X24, Y12] = −Y14

[X24, Y13] = 0

[X24, Y14] = −Y12

[X24, Y15] = 0

[X24, Y23] = −Y34

[X24, Y24] = −2γ2 + 2γ4

[X24, Y25] = Y45
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[X24, Y34] = −Y23

[X24, Y35] = 0

[X24, Y45] = Y25

[X25, Y12] = −Y15

[X25, Y13] = 0

[X25, Y14] = 0

[X25, Y15] = −Y12

[X25, Y23] = −Y35

[X25, Y24] = Y45

[X25, Y25] = −2γ2 + 2γ5

[X25, Y34] = 0

[X25, Y35] = −Y23

[X25, Y45] = Y24

[X34, Y12] = 0

[X34, Y13] = −Y14

[X34, Y14] = −Y13

[X34, Y15] = 0

[X34, Y23] = −Y24

[X34, Y24] = −Y23

[X34, Y25] = 0

[X34, Y34] = −2γ3 + 2γ4

[X34, Y35] = Y45

[X34, Y45] = Y35

[X35, Y12] = 0

[X35, Y13] = −Y15
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[X35, Y14] = 0

[X35, Y15] = −Y13

[X35, Y23] = −Y25

[X35, Y24] = 0

[X35, Y25] = −Y23

[X35, Y34] = Y45

[X35, Y35] = −2γ3 + 2γ5

[X35, Y45] = Y34

[X45, Y12] = 0

[X45, Y13] = 0

[X45, Y14] = −Y15

[X45, Y15] = Y14

[X45, Y23] = 0

[X45, Y24] = −Y25

[X45, Y25] = Y24

[X45, Y34] = −Y35

[X45, Y35] = Y34

[X45, Y45] = −2γ5 + 2γ4

[γ1, X12] = Y12

[γ1, X13] = Y13

[γ1, X14] = Y14

[γ1, X15] = Y15

[γ1, X23] = 0

[γ1, X24] = 0

[γ1, X25] = 0

[γ1, X34] = 0

27



[γ1, X35] = 0

[γ1, X45] = 0

[γ1, Y12] = −X12

[γ1, Y13] = −X13

[γ1, Y14] = −X14

[γ1, Y15] = −X15

[γ1, Y23] = 0

[γ1, Y24] = 0

[γ1, Y25] = 0

[γ1, Y34] = 0

[γ1, Y35] = 0

[γ1, Y45] = 0

[γ2, X12] = −Y12

[γ2, X13] = 0

[γ2, X14] = 0

[γ2, X15] = 0

[γ2, X23] = Y23

[γ2, X24] = Y24

[γ2, X25] = Y25

[γ2, X34] = 0

[γ2, X35] = 0

[γ2, X45] = 0

[γ2, Y12] = X12

[γ2, Y13] = 0

[γ2, Y14] = 0

[γ2, Y15] = 0
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[γ2, Y23] = −X23

[γ2, Y24] = −X24

[γ2, Y25] = −X25

[γ2, Y34] = 0

[γ2, Y35] = 0

[γ2, Y45] = 0

[γ3, X12] = 0

[γ3, X13] = −Y13

[γ3, X14] = 0

[γ3, X15] = 0

[γ3, X23] = −Y23

[γ3, X24] = 0

[γ3, X25] = 0

[γ3, X34] = Y34

[γ3, X35] = Y35

[γ3, X45] = 0

[γ3, Y12] = 0

[γ3, Y13] = X13

[γ3, Y14] = 0

[γ3, Y15] = 0

[γ3, Y23] = X23

[γ3, Y24] = 0

[γ3, Y25] = 0

[γ3, Y34] = −X34

[γ3, Y35] = −X35

[γ3, Y45] = 0
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[γ4, X12] = 0

[γ4, X13] = 0

[γ4, X14] = −Y14

[γ4, X15] = 0

[γ4, X23] = 0

[γ4, X24] = −Y24

[γ4, X25] = 0

[γ4, X34] = −Y34

[γ4, X35] = 0

[γ4, X45] = Y45

[γ4, Y12] = 0

[γ4, Y13] = 0

[γ4, Y14] = X14

[γ4, Y15] = 0

[γ4, Y23] = 0

[γ4, Y24] = X24

[γ4, Y25] = 0

[γ4, Y34] = X34

[γ4, Y35] = 0

[γ4, Y45] = −X45

[γ5, X12] = 0

[γ5, X13] = 0

[γ5, X14] = 0

[γ5, X15] = −Y15

[γ5, X23] = 0
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[γ5, X24] = 0

[γ5, X25] = −Y25

[γ5, X34] = 0

[γ5, X35] = −Y35

[γ5, X45] = −Y45

[γ5, Y12] = 0

[γ5, Y13] = 0

[γ5, Y14] = 0

[γ5, Y15] = X15

[γ5, Y23] = 0

[γ5, Y24] = 0

[γ5, Y25] = X25

[γ5, Y34] = 0

[γ5, Y35] = X35

[γ5, Y45] = X45

10 The Differential Operator-Matrix Corre-

spondence

In order to determine the correspondence between the matrix representation
of u(3, 2) and the Differential Operator representation, we need to compute
the spectrum of the uii acting on the uij.

Since u12 is the eigenvector of the first diagonal operator u11 with eigen-
value i in the differential operator representation, the corresponding matrix
representation is (a multiple of) the eigenvector of the first diagonal operator
with eigenvalue i.

Working with the u(2) Lie sub-algebra :
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γ1 =


i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



γ2 =


0 0 0 0 0
0 i 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



X12 =


0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



Y12 =


0 i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



[X12, Y12] = 2γ1 − 2γ2

[γ1, X12] = Y12

[γ2, X12] = −Y12

[γ1, Y12] = −X12

[γ2, Y12] = X12

[γ1, X12 − iY12] = Y12 + iX12 = i (X12 − iY12)

32



[γ2, X12 − iY12] = −Y12 − iX12 = −i (X12 − iY12)

[γ1, X12 + iY12] = Y12 − iX12 = i (X12 + iY12)

[γ2, X12 + iY12] = −Y12 + iX12 = −i (X12 + iY12)

Now we look at the differential operator brackets:

[u11, u12]

= [

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
x1

∂

∂x2

− x2
∂

∂x1

)
+

(
y1

∂

∂y2

− y2
∂

∂y1

)

+i

(
x2

∂

∂y1

− y1
∂

∂x2

)
+ i

(
x1

∂

∂y2

− y2
∂

∂x1

)
]

We do the calculation term by term:

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
x1

∂

∂x2

− x2
∂

∂x1

)
] = (−i) i

(
x2

∂

∂y1

− y1
∂

∂x2

)

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
y1

∂

∂y2

− y2
∂

∂y1

)
] = (−i) i

(
x1

∂

∂y2

− y2
∂

∂x1

)

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
, i

(
x2

∂

∂y1

− y1
∂

∂x2

)
] =

(−i)
(
x1

∂

∂x2

− x2
∂

∂x1

)

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
, i

(
x1

∂

∂y2

− y2
∂

∂x1

)
] =

(−i)
(
y1

∂

∂y2

− y2
∂

∂y1

)
Summing, we obtain

[u11, u12] = −iu12

Computing the interaction term by term using the differential operator
representation:

[u22, u12] =
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[

(
x2

∂

∂y2

− y2
∂

∂x2

)
,

(
x1

∂

∂x2

− x2
∂

∂x1

)
] =

(
x1

∂

∂y2

− y2
∂

∂x1

)

[

(
x2

∂

∂y2

− y2
∂

∂x2

)
,

(
y1

∂

∂y2

− y2
∂

∂y1

)
] =

(
x2

∂

∂y1

− y1
∂

∂x2

)

[

(
x2

∂

∂y2

− y2
∂

∂x2

)
, i

(
x2

∂

∂y1

− y1
∂

∂x2

)
] =

(
y2

∂

∂y1

− y1
∂

∂y2

)

[

(
x2

∂

∂y2

− y2
∂

∂x2

)
, i

(
x1

∂

∂y2

− y2
∂

∂x1

)
] =− i

(
x2

∂

∂x1

− x1
∂

∂x2

)
Adding, we obtain

[u22, u12] = iu12

Comparing the matrix brackets with the differential operator brackets,
we obtain a correspondence:

u11 → γ1

u22 → γ2

u12 → X12 + iY12

u21 → X12 − iY12

11 Operator Representation

A few more calculations show that the following vector fields on QAdS satisfy
the same relations as do the corresponding matrices. The same symbols
are used for the abstract elements of the Lie algebra, the defining matrix
representation and the operator representation. Since these are the only
representations we use, there should be no confusion.

Our work on u(2) showed that we should add a ‘y′ copy to each ‘x′

generator. We do that for the generators of so(3, 2) from section 1.

X12 = x1
∂

∂x2

− x2
∂

∂x1

+ y1
∂

∂y2

− y2
∂

∂y1

X13 = x1
∂

∂x3

− x3
∂

∂x1

+ y1
∂

∂y3

− y3
∂

∂y1

X14 = x1
∂

∂x4

+ x4
∂

∂x1

+ y1
∂

∂y4

+ y4
∂

∂y1
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X15 = x1
∂

∂x5

+ x5
∂

∂x1

+ y1
∂

∂y5

+ y5
∂

∂y1

X23 = x2
∂

∂x3

− x3
∂

∂x2

+ y2
∂

∂y3

− y3
∂

∂y2

X24 = x2
∂

∂x4

+ x4
∂

∂x2

+ y2
∂

∂y4

+ y4
∂

∂y2

X25 = x2
∂

∂x5

+ x5
∂

∂x2

+ y2
∂

∂y5

+ y5
∂

∂y2

X34 = x3
∂

∂x4

+ x4
∂

∂x3

+ y3
∂

∂y4

+ y4
∂

∂y3

X35 = x3
∂

∂x5

+ x5
∂

∂x3

+ y3
∂

∂y5

+ y5
∂

∂y3

X45 = x4
∂

∂x5

− x5
∂

∂x4

+ y4
∂

∂y5

− y5
∂

∂y4

Then we add the Cartan subalgebra (spectrum generating operators) to
the basis:

γ1 =

(
x1

∂

∂y1

− y1
∂

∂x1

)

γ2 =

(
x2

∂

∂y2

− y2
∂

∂x2

)

γ3 =

(
x3

∂

∂y3

− y3
∂

∂x3

)

γ4 =

(
x4

∂

∂y4

− y4
∂

∂x4

)

γ5 =

(
x5

∂

∂y5

− y5
∂

∂x5

)
The previous foray into u(2) was necessary in order find these operators.
In order to determine the operator representation of the YIJ we compute

the interaction of the diagonal operators with our hybrid generators.

[γ1, X12] = [

(
x1

∂

∂y1

− y1
∂

∂x1

)
, x1

∂

∂x2

− x2
∂

∂x1

+ y1
∂

∂y2

− y2
∂

∂y1

]
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= x2
∂

∂y1

− y1
∂

∂x2

+ x1
∂

∂y2

− y2
∂

∂x1

= Y12

[γ2, X12] = [

(
x2

∂

∂y2

− y2
∂

∂x2

)
, x1

∂

∂x2

− x2
∂

∂x1

+ y1
∂

∂y2

− y2
∂

∂y1

]

= −x2
∂

∂y1

+ y1
∂

∂x2

− x1
∂

∂y2

+ y2
∂

∂x1

= −Y12

[γ1, X13] = [

(
x1

∂

∂y1

− y1
∂

∂x1

)
, x1

∂

∂x3

− x3
∂

∂x1

+ y1
∂

∂y3

− y3
∂

∂y1

]

= x3
∂

∂y1

− y1
∂

∂x3

+ x1
∂

∂y3

− y3
∂

∂x1

= Y13

[γ3, X13] = [

(
x3

∂

∂y3

− y3
∂

∂x3

)
, x1

∂

∂x3

− x3
∂

∂x1

+ y1
∂

∂y3

− y3
∂

∂y1

]

= −x3
∂

∂y1

+ y1
∂

∂x3

− x1
∂

∂y3

+ y3
∂

∂x1

= −Y13

[γ1, X14] = [

(
x1

∂

∂y1

− y1
∂

∂x1

)
, x1

∂

∂x4

+ x4
∂

∂x1

+ y1
∂

∂y4

+ y4
∂

∂y1

]

= x1
∂

∂y4

+ y4
∂

∂x1

− x4
∂

∂y1

− y1
∂

∂x4

= Y14

[γ4, X14] = [

(
x4

∂

∂y4

− y4
∂

∂x4

)
, x1

∂

∂x4

+ x4
∂

∂x1

+ y1
∂

∂y4

+ y4
∂

∂y1

]

= −x1
∂

∂y4

− y4
∂

∂x1

+ x4
∂

∂y1

+ y1
∂

∂x4

= −Y14

[γ1, X15] = [

(
x1

∂

∂y1

− y1
∂

∂x1

)
, x1

∂

∂x5

+ x5
∂

∂x1

+ y1
∂

∂y5

+ y5
∂

∂y1

]

= x1
∂

∂y5

+ y5
∂

∂x1

− x5
∂

∂y1

− y1
∂

∂x5

= Y15

[γ5, X15] = [

(
x5

∂

∂y5

− y5
∂

∂x5

)
, x1

∂

∂x5

+ x5
∂

∂x1

+ y1
∂

∂y5

+ y5
∂

∂y1

]
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= −x1
∂

∂y5

− y5
∂

∂x1

+ x5
∂

∂y1

+ y1
∂

∂x5

= −Y15

[γ2, X23] = [

(
x2

∂

∂y2

− y2
∂

∂x2

)
, x2

∂

∂x3

− x3
∂

∂x2

+ y2
∂

∂y3

− y3
∂

∂y2

]

= x2
∂

∂y3

− y3
∂

∂x2

+ x3
∂

∂y2

− y2
∂

∂x3

= Y23

[γ3, X23] = [

(
x3

∂

∂y3

− y3
∂

∂x3

)
, x2

∂

∂x3

− x3
∂

∂x2

+ y2
∂

∂y3

− y3
∂

∂y2

]

= −x2
∂

∂y3

+ y3
∂

∂x2

− x3
∂

∂y2

+ y2
∂

∂x3

= −Y23

[γ2, X24] = [

(
x2

∂

∂y2

− y2
∂

∂x2

)
, x2

∂

∂x4

+ x4
∂

∂x2

+ y2
∂

∂y4

+ y4
∂

∂y2

]

= x2
∂

∂y4

+ y4
∂

∂x2

− x4
∂

∂y2

− y2
∂

∂x4

= Y24

[γ4, X24] = [

(
x4

∂

∂y4

− y4
∂

∂x4

)
, x2

∂

∂x4

+ x4
∂

∂x2

+ y2
∂

∂y4

+ y4
∂

∂y2

]

= −x2
∂

∂y4

− y4
∂

∂x2

+ x4
∂

∂y2

+ y2
∂

∂x4

= −Y24

[γ2, X25] = [

(
x2

∂

∂y2

− y2
∂

∂x2

)
, x2

∂

∂x5

+ x5
∂

∂x2

+ y2
∂

∂y5

+ y5
∂

∂y2

]

= x2
∂

∂y5

+ y5
∂

∂x2

− x5
∂

∂y2

− y2
∂

∂x5

= Y25

[γ5, X25] = [

(
x5

∂

∂y5

− y5
∂

∂x5

)
, x2

∂

∂x5

+ x5
∂

∂x2

+ y2
∂

∂y5

+ y5
∂

∂y2

]
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= −x2
∂

∂y5

− y5
∂

∂x2

+ x5
∂

∂y2

+ y2
∂

∂x5

= −Y25

[γ3, X34] = [

(
x3

∂

∂y3

− y3
∂

∂x3

)
, x3

∂

∂x4

+ x4
∂

∂x3

+ y3
∂

∂y4

+ y4
∂

∂y3

]

= x3
∂

∂y4

+ y4
∂

∂x3

− x4
∂

∂y3

− y3
∂

∂x4

= Y34

[γ4, X34] = [

(
x4

∂

∂y4

− y4
∂

∂x4

)
, x3

∂

∂x4

+ x4
∂

∂x3

+ y3
∂

∂y4

+ y4
∂

∂y3

]

= −x3
∂

∂y4

− y4
∂

∂x3

+ x4
∂

∂y3

+ y3
∂

∂x4

= −Y34

[γ3, X35] = [

(
x3

∂

∂y3

− y3
∂

∂x3

)
, x3

∂

∂x5

+ x5
∂

∂x3

+ y3
∂

∂y5

+ y5
∂

∂y3

]

= x3
∂

∂y5

+ y5
∂

∂x3

− x5
∂

∂y3

− y3
∂

∂x5

= Y35

[γ5, X35] = [

(
x5

∂

∂y5

− y5
∂

∂x5

)
, x3

∂

∂x5

+ x5
∂

∂x3

+ y3
∂

∂y5

+ y5
∂

∂y3

]

= −x3
∂

∂y5

− y5
∂

∂x3

+ x5
∂

∂y3

+ y3
∂

∂x5

= −Y35

[γ4, X45] = [

(
x4

∂

∂y4

− y4
∂

∂x4

)
, x4

∂

∂x5

− x5
∂

∂x4

+ y4
∂

∂y5

− y5
∂

∂y4

]

= x4
∂

∂y5

− y5
∂

∂x4

+ x5
∂

∂y4

− y4
∂

∂x5

= Y45

[γ5, X45] = [

(
x5

∂

∂y5

− y5
∂

∂x5

)
, x4

∂

∂x5

− x5
∂

∂x4

+ y4
∂

∂y5

− y5
∂

∂y4

]

= −x4
∂

∂y5

+ y5
∂

∂x4

− x5
∂

∂y4

+ y4
∂

∂x5

= −Y45
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Just as Penrose’s [42] “Twistors. . . are the spinors for the conformal group”
(SU(2, 2)), the operators defined above are the spinors for U(3, 2).

Normally, the coordinates are given as functions and the momenta are
operators. Snyder [51] reversed the role to obtain a set of operators repre-
senting the coordinates and then used functions to represent the correspond-
ing momenta. To totally utilize the Lie algebra approach, we should work
in the space of frames or, equivalently the entire Lie algebra. Thus both
the coordinate and the momenta must be represented by first order differen-
tial operators. Snyder wrote down some of the above operators with certain
combinations occuring with only a plus and others with only a minus. The
above operators then include Snyder’s with all possible combinations of plus
and minus and in addition the diagonal operators to close the algebra. The
complex combinations X+ iY are then the combinations x+ ip as Rosen [45]
advocated, albeit with the commutation relations of the Lie algebra u(3, 2)
instead of the canonical commutation relations.

12 Ignorable symmetries?

Looking at the function

ρ2 = z1z̄1 + z2z̄2 + z3z̄3 − z4z̄4 − z5z̄5,

in the form

ρ2
R = x2

1 + y2
1 + x2

2 + y2
2 + x2

3 + y2
3 − x2

4 − y2
4 − x2

5 − y2
5,

the recipe allows for operators not in u(3, 2). Their role (if any) in the theory
is not clear at this point. However, we need to determine the consequences
of including them in our Lie algebra before we can decide whether to admit
them or not. They may be considered to be hidden symmetries. Including
them would lead to new conservation laws.

v12 = z̄1
∂

∂z2

− z̄2
∂

∂z1

= (x1 − iy1)

(
∂

∂x2

− i ∂
∂y2

)
− (x2 − iy2)

(
∂

∂x1

− i ∂
∂y1

)

=
(
x1

∂
∂x2
− x2

∂
∂x1

)
+
(
y2

∂
∂y1
− y1

∂
∂y2

)
+i
[(
x2

∂
∂y1
− y1

∂
∂x2

)
+
(
y2

∂
∂x1
− x1

∂
∂y2

)]
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w12 = z̄1
∂

∂z2

− z̄2
∂

∂z1

=
(
x1

∂
∂x2
− x2

∂
∂x1

)
+
(
y2

∂
∂y1
− y1

∂
∂y2

)
−i
[(
x2

∂
∂y1
− y1

∂
∂x2

)
+
(
y2

∂
∂x1
− x1

∂
∂y2

)]
Then

1

2
(v12 + w12) =

(
x1

∂

∂x2

− x2
∂

∂x1

)
+

(
y2

∂

∂y1

− y1
∂

∂y2

)

and
1

2i
(v12 − w12) =

[(
x2

∂

∂y1

− y1
∂

∂x2

)
+

(
y2

∂

∂x1

− x1
∂

∂y2

)]
This leads us to define the Vij as the Xij with the sign of the y terms

changed:

V12 = x1
∂

∂x2

− x2
∂

∂x1

− y1
∂

∂y2

+ y2
∂

∂y1

V13 = x1
∂

∂x3

− x3
∂

∂x1

− y1
∂

∂y3

+ y3
∂

∂y1

V14 = x1
∂

∂x4

+ x4
∂

∂x1

− y1
∂

∂y4

− y4
∂

∂y1

V15 = x1
∂

∂x5

+ x5
∂

∂x1

− y1
∂

∂y5

− y5
∂

∂y1

V23 = x2
∂

∂x3

− x3
∂

∂x2

− y2
∂

∂y3

+ y3
∂

∂y2

V24 = x2
∂

∂x4

+ x4
∂

∂x2

− y2
∂

∂y4

− y4
∂

∂y2

V25 = x2
∂

∂x5

+ x5
∂

∂x2

− y2
∂

∂y5

− y5
∂

∂y2

V34 = x3
∂

∂x4

+ x4
∂

∂x3

− y3
∂

∂y4

− y4
∂

∂y3
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V35 = x3
∂

∂x5

+ x5
∂

∂x3

− y3
∂

∂y5

− y5
∂

∂y3

V45 = x4
∂

∂x5

− x5
∂

∂x4

− y4
∂

∂y5

+ y5
∂

∂y4

Then we compute the action of the Cartan subalgebra on the Vij :

[γ1, V12] = [

(
x1

∂

∂y1

− y1
∂

∂x1

)
, x1

∂

∂x2

− x2
∂

∂x1

− y1
∂

∂y2

+ y2
∂

∂y1

]

= x2
∂

∂y1

− y1
∂

∂x2

− x1
∂

∂y2

+ y2
∂

∂x1

= −W12

The reason for the negative will be explained in a moment.

[γ2, V12] = [

(
x2

∂

∂y2

− y2
∂

∂x2

)
, x1

∂

∂x2

− x2
∂

∂x1

− y1
∂

∂y2

+ y2
∂

∂y1

]

= x2
∂

∂y1

− y1
∂

∂x2

− x1
∂

∂y2

+ y2
∂

∂x1

= −W12

Recall that that [γi, Xij] = −Yij and [γi, Yij] = Xij so the signs were different.
Thus

[γi, [γi, Xij]] = −Xij

and
[γi, [γi, Yij]] = −Yij.

The Vij satisfy:
[γi, [γi, Vij]] = Vij

[γ1, V13] = [

(
x1

∂

∂y1

− y1
∂

∂x1

)
, x1

∂

∂x3

− x3
∂

∂x1

− y1
∂

∂y3

+ y3
∂

∂y1

]

= x3
∂

∂y1

− y1
∂

∂x3

− x1
∂

∂y3

+ y3
∂

∂x1

= −W13

[γ3, V13] = [

(
x3

∂

∂y3

− y3
∂

∂x3

)
, x1

∂

∂x3

− x3
∂

∂x1

− y1
∂

∂y3

+ y3
∂

∂y1

]

= x3
∂

∂y1

− y1
∂

∂x3

− x1
∂

∂y3

+ y3
∂

∂x1

= −W13
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In contrast to the relations we had before:

[γi, Xij] = −Yij

and
[γj, Xij] = Yij

these new vectors satisfy:
[γi, Vij] = −Wij

and
[γj, Vij] = −Wij

[γ1, V14] = [

(
x1

∂

∂y1

− y1
∂

∂x1

)
, x1

∂

∂x4

+ x4
∂

∂x1

− y1
∂

∂y4

− y4
∂

∂y1

]

= −x1
∂

∂y4

− y4
∂

∂x1

− x4
∂

∂y1

− y1
∂

∂x4

= −W14

If we had the positive sign for W14, then each term would be negative, hence
the negatives were put in only for esthetic reasons.

[γ4, V14] = [

(
x4

∂

∂y4

− y4
∂

∂x4

)
, x1

∂

∂x4

+ x4
∂

∂x1

− y1
∂

∂y4

− y4
∂

∂y1

]

= −x1
∂

∂y4

− y4
∂

∂x1

− x4
∂

∂y1

− y1
∂

∂x4

= −W14

[γ1, V15] = [

(
x1

∂

∂y1

− y1
∂

∂x1

)
, x1

∂

∂x5

+ x5
∂

∂x1

− y1
∂

∂y5

− y5
∂

∂y1

]

= −x1
∂

∂y5

− y5
∂

∂x1

− x5
∂

∂y1

− y1
∂

∂x5

= −W15

[γ5, V15] = [

(
x5

∂

∂y5

− y5
∂

∂x5

)
, x1

∂

∂x5

+ x5
∂

∂x1

− y1
∂

∂y5

− y5
∂

∂y1

]

= −x1
∂

∂y5

− y5
∂

∂x1

− x5
∂

∂y1

− y1
∂

∂x5

= −W15
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[γ2, V23] = [

(
x2

∂

∂y2

− y2
∂

∂x2

)
, x2

∂

∂x3

− x3
∂

∂x2

− y2
∂

∂y3

+ y3
∂

∂y2

]

= −x2
∂

∂y3

+ y3
∂

∂x2

+ x3
∂

∂y2

− y2
∂

∂x3

= −W23

[γ3, V23] = [

(
x3

∂

∂y3

− y3
∂

∂x3

)
, x2

∂

∂x3

− x3
∂

∂x2

− y2
∂

∂y3

+ y3
∂

∂y2

]

= −x2
∂

∂y3

+ y3
∂

∂x2

+ x3
∂

∂y2

− y2
∂

∂x3

= −W23

[γ2, V24] = [

(
x2

∂

∂y2

− y2
∂

∂x2

)
, x2

∂

∂x4

+ x4
∂

∂x2

− y2
∂

∂y4

− y4
∂

∂y2

]

= −x2
∂

∂y4

− y4
∂

∂x2

− x4
∂

∂y2

− y2
∂

∂x4

= −W24

[γ4, V24] = [

(
x4

∂

∂y4

− y4
∂

∂x4

)
, x2

∂

∂x4

+ x4
∂

∂x2

− y2
∂

∂y4

− y4
∂

∂y2

]

= −x2
∂

∂y4

− y4
∂

∂x2

− x4
∂

∂y2

− y2
∂

∂x4

= −Y24

[γ2, V25] = [

(
x2

∂

∂y2

− y2
∂

∂x2

)
, x2

∂

∂x5

+ x5
∂

∂x2

− y2
∂

∂y5

− y5
∂

∂y2

]

= −x2
∂

∂y5

− y5
∂

∂x2

− x5
∂

∂y2

− y2
∂

∂x5

= −W25

[γ5, V25] = [

(
x5

∂

∂y5

− y5
∂

∂x5

)
, x2

∂

∂x5

+ x5
∂

∂x2

− y2
∂

∂y5

− y5
∂

∂y2

]
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= −x2
∂

∂y5

− y5
∂

∂x2

− x5
∂

∂y2

− y2
∂

∂x5

= −W25

[γ3, V34] = [

(
x3

∂

∂y3

− y3
∂

∂x3

)
, x3

∂

∂x4

+ x4
∂

∂x3

− y3
∂

∂y4

− y4
∂

∂y3

]

= −x3
∂

∂y4

− y4
∂

∂x3

− x4
∂

∂y3

− y3
∂

∂x4

= −W34

[γ4, V34] = [

(
x4

∂

∂y4

− y4
∂

∂x4

)
, x3

∂

∂x4

+ x4
∂

∂x3

− y3
∂

∂y4

− y4
∂

∂y3

]

= −x3
∂

∂y4

− y4
∂

∂x3

− x4
∂

∂y3

− y3
∂

∂x4

= −W34

[γ3, V35] = [

(
x3

∂

∂y3

− y3
∂

∂x3

)
, x3

∂

∂x5

+ x5
∂

∂x3

− y3
∂

∂y5

− y5
∂

∂y3

]

= −x3
∂

∂y5

− y5
∂

∂x3

− x5
∂

∂y3

− y3
∂

∂x5

= −W35

[γ5, V35] = [

(
x5

∂

∂y5

− y5
∂

∂x5

)
, x3

∂

∂x5

+ x5
∂

∂x3

− y3
∂

∂y5

− y5
∂

∂y3

]

= −x3
∂

∂y5

− y5
∂

∂x3

− x5
∂

∂y3

− y3
∂

∂x5

= −W35

[γ4, V45] = [

(
x4

∂

∂y4

− y4
∂

∂x4

)
, x4

∂

∂x5

− x5
∂

∂x4

− y4
∂

∂y5

+ y5
∂

∂y4

]

= −x4
∂

∂y5

+ y5
∂

∂x4

+ x5
∂

∂y4

− y4
∂

∂x5

= −W45

[γ5, V45] = [

(
x5

∂

∂y5

− y5
∂

∂x5

)
, x4

∂

∂x5

− x5
∂

∂x4

− y4
∂

∂y5

+ y5
∂

∂y4

]

= −x4
∂

∂y5

+ y5
∂

∂x4

+ x5
∂

∂y4

− y4
∂

∂x5

= −W45
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13 Particle-Operator Correspondence

In order to obtain the operator representation of the elementary particles,
we first need to calculate the eigenvalues (quantum numbers).

[γ1, X12 + iY12] = −i (X12 + iY12)

[γ2, X12 + iY12] = i (X12 + iY12)

[γ1, X12 − iY12] = i (X12 − iY12)

[γ2, X12 − iY12] = −i (X12 + iY12)

[γ1, X13 + iY13] = −i (X13 + iY13)

[γ3, X13 + iY13] = i (X13 + iY13)

[γ1, X13 − iY13] = i (X13 − iY13)

[γ3, X13 − iY13] = −i (X13 − iY13)

[γ1, X14 + iY14] = −i (X14 + iY14)

[γ4, X14 + iY14] = i (X14 + iY14)

[γ1, X14 − iY14] = −i (X14 − iY14)

[γ4, X14 − iY14] = −i (X14 − iY14)

[γ2, X23 + iY23] = −i (X23 + iY23)

[γ3, X23 + iY23] = i (X23 + iY23)

[γ2, X23 − iY23] = i (X23 − iY23)

[γ3, X23 − iY23] = −i (X23 − iY23)

[γ2, X24 + iY24] = −i (X24 + iY24)

[γ4, X24 + iY24] = i (X24 + iY24)

[γ2, X24 − iY24] = i (X24 − iY24)

[γ4, X24 − iY24] = −i (X24 − iY24)

[γ3, X34 + iY34] = −i (X34 + iY34)

[γ4, X34 + iY34] = i (X24 + iY24)

[γ3, X34 − iY34] = i (X34 − iY34)
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[γ4, X34 − iY34] = −i (X34 − iY34)

Now we have the information necessary to determine the operator corre-
sponding to each particle.

γ1 γ2 γ3 γ4

ν i −i 0 0 X12 − iY12

ν̄ −i i 0 0 X12 + iY12

H i 0 −i 0 X13 − iY13

H̄ −i 0 i 0 X13 + iY13

e− i 0 0 −i X14 − iY14

e+ −i 0 0 i X14 + iY14

n 0 i −i 0 X23 − iY23

n̄ 0 −i i 0 X23 + iY23

π− 0 i 0 −i X24 − iY24

π+ 0 −i 0 i X24 + iY24

p+ 0 0 −i i X34 + iY34

p− 0 0 i −i X34 − iY34

14 Field-Particle Interactions

The connection between the field and its source has always
been and still is the most difficult problem in classical and quan-
tum electrodynamics.—D.K. Sen [50]

The formalism developed in the previous sections allows us to reveal “the
connection between the field and its source.” We will see how the fields act
on the particle as well as how the particle generates its fields, which is a
problem in all field theories. Using the differential operator representation,
we compute the interaction of the γ1 field with the antineutrino term by
term:

[γ1, ν̄] =

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
x1

∂

∂x2

− x2
∂

∂x1

)
+

(
y1

∂

∂y2

− y2
∂

∂y1

)

+i

(
x2

∂

∂y1

− y1
∂

∂x2

)
+ i

(
x1

∂

∂y2

− y2
∂

∂x1

)
]

46



We will do the calculation term by term:

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
x1

∂

∂x2

− x2
∂

∂x1

)
]

=

(
x2

∂

∂y1

− y1
∂

∂x2

)

= − (i) (i)

(
x2

∂

∂y1

− y1
∂

∂x2

)

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
y1

∂

∂y2

− y2
∂

∂y1

)
]

=

(
x1

∂

∂y2

− y2
∂

∂x1

)

= − (i) (i)

(
x1

∂

∂y2

− y2
∂

∂x1

)

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
, i

(
x2

∂

∂y1

− y1
∂

∂x2

)
]

= −i
(
x1

∂

∂x2

− x2
∂

∂x1

)

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
, i

(
x1

∂

∂y2

− y2
∂

∂x1

)
]

= −i
(
y1

∂

∂y2

− y2
∂

∂y1

)
Summing, we obtain −i times what we started with. But there is more

going on, the field permutes the four components.
It is interesting to note that the above describes the neutrino in terms of

a four component spinor. Fermi describes the neutrino as a four component
spinor. Is there a connection between the two descriptions?

We could do a similar calculation for each elementary particle, but we
will only do one more in detail.

47



Computing the interaction of the γ1 with a positron:

[γ1, e
+] = [γ1, X14 + iY14] =

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
x1

∂

∂x4

+ x4
∂

∂x1

)

+

(
y1

∂

∂y4

+ y4
∂

∂y1

)
+ i

(
x1

∂

∂y4

+ y4
∂

∂x1

)
− i

(
x4

∂

∂y1

+ y1
∂

∂x4

)
]

the interaction of the field with the particle distinguishes four separate parts
of the anti-electron:

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
x1

∂

∂x4

+ x4
∂

∂x1

)
] =

−
(
x4

∂

∂y1

+ y1
∂

∂x4

)

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
y1

∂

∂y4

+ y4
∂

∂y1

)
] =

(
x1

∂

∂y4

+ y4
∂

∂x1

)

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
x4

∂

∂y1

+ y1
∂

∂x4

)
] =

(
x1

∂

∂x4

+ x4
∂

∂x1

)

[

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
x1

∂

∂y4

+ y4
∂

∂x1

)
] =

−
(
y1

∂

∂y4

+ y4
∂

∂y1

)
Again as with the neutrino, the field permutes the four components. Now

the question arises, do these four operators have any significance of their own,
do their interactions play any role in the description of the electron? The
only way to find out is to do the calculations and see what develops. Let’s
label the four parts:
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χ14 =

(
x1

∂

∂x4

+ x4
∂

∂x1

)

ζ14 =

(
y1

∂

∂y4

+ y4
∂

∂y1

)

A14 =

(
x4

∂

∂y1

+ y1
∂

∂x4

)

B14 =

(
x1

∂

∂y4

+ y4
∂

∂x1

)
Now we compute the rest of the operators in this “internal algebra”:

[χ14, ζ14] = [

(
x1

∂

∂x4

+ x4
∂

∂x1

)
,

(
y1

∂

∂y4

+ y4
∂

∂y1

)
] = 0

[χ14, A14] = [

(
x1

∂

∂x4

+ x4
∂

∂x1

)
,

(
x4

∂

∂y1

+ y1
∂

∂x4

)
]

= −y1
∂

∂x1

+ x1
∂

∂y1

= γ1

[ζ14, A14] = [

(
y1

∂

∂y4

+ y4
∂

∂y1

)
,

(
x4

∂

∂y1

+ y1
∂

∂x4

)
]

=

(
y4

∂

∂x4

− x4
∂

∂y4

)
= −γ4

[A14, B14] = 0

[χ14, B14] = [

(
x1

∂

∂x4

+ x4
∂

∂x1

)
,

(
x1

∂

∂y4

+ y4
∂

∂x1

)
]

=

(
x4

∂

∂y4

− y4
∂

∂x4

)
= γ4
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[ζ14, B14] = [

(
y1

∂

∂y4

+ y4
∂

∂y1

)
,

(
x1

∂

∂y4

+ y4
∂

∂x1

)
]

=

(
y1

∂

∂x1

− x1
∂

∂y1

)
= −γ1

Thus, the internal algebra includes the fields of the particle.

[γ1, χ14] = [

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
x1

∂

∂x4

+ x4
∂

∂x1

)
]

=

(
−y1

∂

∂x4

− x4
∂

∂y1

)
= −A14

[γ4, χ14] = [

(
x4

∂

∂y4

− y4
∂

∂x4

)
,

(
x1

∂

∂x4

+ x4
∂

∂x1

)
]

=

(
−y4

∂

∂x1

− x1
∂

∂y4

)
] = −B14

[γ4, A14] = [

(
x4

∂

∂y4

− y4
∂

∂x4

)
,

(
x4

∂

∂y1

+ y1
∂

∂x4

)
]

=

(
y1

∂

∂y4

+ y4
∂

∂y1

)
= ζ14

[γ1, A14] = [

(
x1

∂

∂y1

− y1
∂

∂x1

)
,

(
x4

∂

∂y1

+ y1
∂

∂x4

)
]

= −
(
x1

∂

∂x4

+ x4
∂

∂x1

)
= −χ14

The internal algebra generators are then: χ14, A14 = −[γ1, χ14], B14 =
−[γ4, χ14], ζ21 = [γ1, [γ4, χ14]], γ1, and γ4.

The fields then act as the input of an anharmonic oscillator, setting up
vibrational patterns:

χ14 ←γ1 → [γ1, χ14]
↑ γ4 ↓ ↑ γ4 ↓

[γ4, χ14] ←γ1 → [γ1, [γ4, χ14]]
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If our work on the Vortex-Spin Networks taught us anything it is that the
arrows must go one direction for the particle, the other direction for the
antiparticle. Then for the electron, we would have:

χ14 γ1 → [γ1, χ14]
↑ γ4 γ4 ↓

[γ4, χ14] ←γ1 [γ1, [γ4, χ14]]

while the antielectron would have a flow in the opposite direction:

χ14 ←γ1 [γ1, χ14]
γ4 ↓ ↑ γ4

[γ4, χ14] γ1 → [γ1, [γ4, χ14]]

Just as the motion of a charged particle generates a magnetic field, so
the internal motion within an elementary particle generates its fields. If we
were to analyze a proton, we would also have four components which would
evidently correspond to the idea of quarks. But here every particle has the
four component internal structure.

In [35] I showed that the interaction of elementary particles can be inter-
preted in terms of the Lie bracket of vector fields on the complex space-time
QAdS = U(3, 2)/U(3, 1) × U(1). The only problem with the analysis there
is that the differential operator representation used there proved to be inad-
equate: the above diagram was not possible using those operators. In the
next section we continue this analysis and show that we are forced to intepret
the complex space-time QAdS in terms of the modes of oscillation of fields
on AdS.

15 Particles as Geometry

At the turn of the century physicists began to be dissatisfied
with the dualism of a theory admitting two kinds of fundamen-
tal physical reality: on the one hand the field and on the other
hand the material particles. It is only natural that attempts were
made to represent the material particles as structures in the field,
that is, as places where the fields were exceptionally concentrated.
Any such representation of particles as the basis of the field theory
would have been a great achievement, but in spite of all efforts of

51



science it has not been accomplished. It must even he admitted
that this dualism is today sharper and more troublesome than it
was ten years ago. This fact is connected with the latest impe-
tus to developments in quantum theory, where the theory of the
continuous (field theory) and the essentially discontinuous inter-
pretation of the elementary structures and processes are fighting
for supremacy.

—Albert Einstein[11]

Wheeler [54] detailed his view of the role of geometry in physics:

Is space-time only an arena within which fields and particles
move about as “physical” and “foreign” entities? Or is the four-
dimensional continuum all there is? Is curved empty geometry a
kind of magic building material out of which everything in the
physical world is made: (1) slow curvature in one region of space
describes a gravitational field; (2) a rippled geometry with a dif-
ferent type of curvature somewhere else describes an electromag-
netic field; (3) a knotted up region of high curvature describes a
concentration of charge and mass-energy that moves like a par-
ticle? Are fields and particles entities immersed in geometry, or
are they nothing but geometry?

It would be difficult to name any issue more central to the
plan of physics: whether space-time is only an arena or whether
it is everything.

A complex space-time was required to realize what Wheeler [56] called

. . . the picture of Clifford and Einstein that particles originate
from geometry; that there is no such thing as a particle immersed
in geometry, but only a particle built out of geometry.

Wheeler was invoking Clifford’s statements in his talk before the Cam-
bridge Philosophical Society on February 21,1870 entitled “On the Space
Theory of Matter”:

I hold in fact (1) That small portions of space are in fact of
a nature analogous to little hills on a surface which is on the
average flat; namely, that the ordinary laws of geometry are not
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valid in them. (2) That this property of being curved or distorted
is continually being passed on from one portion of space to an-
other after the manner of a wave. (3) That this variation of the
curvature of space is what really happens in that phenomenon
which we call the motion of matter, whether ponderable or ethe-
rial. (4) That in the physical world nothing else takes place but
this variation, subject (possibly) to the law of continuity.

In his vision of matter as curvature, Clifford presaged not only General
Relativity but also quantum mechanics, since he saw the curvature propa-
gating as a wave much like the currently popular Ricci flows.

This is a theme which Wheeler repeated many times, after the above
quotation from Clifford, Rees, Ruffini and Wheeler [44] go on to:

Ask if there is a sense in which to speak of a particle as con-
structed out of geometry. Or rephrase the question in updated
language: “Is a particle a geometrodynamic exciton?” What else
is there out of which to build a particle except geometry itself?
And what else is there to give discreteness to such an object ex-
cept the quantum principle? (p. 292)

According to Wheeler, “The most evident shortcoming of the geometro-
dynamical model as it stands is this, that it fails to supply any completely
natural place for spin - in general and for the neutrino.”

The geometric model of matter being developed here has a natural place
for spin, charge, baryon number and lepton number as well as particle type.

Wheeler once more: “The Riemannian curvature tensor . . . tells the re-
sponse of matter to geometry.” [55]

If it describes anything, the Riemannian curvature tensor describes the
total geometric input from all particles. The problem with this is that the
particle contributes to the geometry, but it does not respond to the geometry
it creates. A particle creates the geometry which other particles respond to.
It does not create the geometry it responds to. Which is why interaction
via Lie bracket is essential to describing the physics: any particle bracketed
with itself yields zero. This also touches on Wheeler’s next question: “What
about the converse issue, the response of geometry to matter?”

Wheeler [44] claims that “No inconsistency of principle has ever been
found in Einstein’s geometric theory of gravity.” The self interaction problem
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is one, but there is a larger problem: conserved quantities in general relativity.
In the standard treatment, a conserved quantity corresponds with a Killing
field, a symmetry of the metric. A conservation law limits the behavior of
matter, however the introduction of matter destroys the symmetry of the
metric and hence also destroys the conservation law. I have to conclude
that the metric cannot be the fundamental object and that the source of
conservation laws is to be found elsewhere.

Specifically the conservation laws are found in the geometric setting of
U(3, 2)/U(3, 1)× U(1). This an example of Theorem 8.1 of Hermann [26]:

Let G be a semisimple Lie group, M = G/L a coset space of
G which admits a G-invariant canonical structure. Then, there
is an element Z ∈ G such that:

L = centralizer of Z in G,
i.e. the set of X ∈ G such that [X,Z] = 0. Further, the form

ω determining the canonical structure is determined in terms of
Z by

ω (X, Y ) = B ([Z,X], Y )

Here B is the Killing form.
Putting in the details of our specific model, with Z = γ5:

ω (X, Y ) = B ([γ5, X], Y ) = B ([γ5, [X, Y ])

Thus ω (X, Y ) = 0 except for

ω (Xi5, Yi5) = B ([γ5, Xi5], Yi5])

= B (−[Yi5, [Yi5) =
{
−1 . . . i 6= 4
1 . . . i = 4.

Let us recall the properties of the Killing form on a Lie algebra. The
Killing form is defined by:

B(X, Y ) = Tr(adXadY )

Thus, we would compute
[X, [Y, Z]]

for all Z in the Lie algebra. To evaluate the trace we take the sum of the
eigenvalues.
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The Killing form satisfies:

B([X, Y ], Z) = B(X, [Y, Z])

The general curvature 4-tensor on a homogeneous space is given by

R(X, Y, U, V ) = B(R(X, Y )U, V )

where B is the Killing form on u(3, 2). By elementary properties of the Killing
form and using

R(X, Y )U = −[[X,Y ], U ]

which is valid for a reductive homogeneous space, we obtain

R(X, Y, U, V ) = B(R(X, Y )U, V )

= −B([[X, Y ], U ], V )

= −B([X, Y ], [U, V ])

Thus the curvature is defined in terms of the Lie bracket.
In their foundational paper on axiomatic quantum field theory, Wightman

and Garding [58] showed that relativistic quantum fields should be viewed
as “operator valued distributions” In the present work, no distinction can be
made between a particle and its fields. An element of the Lie algebra can be
viewed as an operator, the corresponding Lie derivative. Thus tangent vec-
tors are simply a geometric interpretation of “operator valued distributions”.

The tangent vectors can also be taken as the foundation of a theory of
gravity. Dirac [8] discussed the tetrad (a.k.a veirbein) formulation of General
Relativity:

For dealing with spinors in a Riemann space one must in-
troduce a fourleg at each point described by field functions hµa

satisfying
hµ

ahµb = ηab, ηabhµahνb = gµν

where ηab is the fundamental tensor of special relativity. The hµa

become the fundamental field quantities of the gravitational field,
instead of the gµν .
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The ‘fourleg’, a.k.a. tetrad or vierbein formalism finds its perfect fulfill-
ment in the homogeneous space setting, where the vectors defining the tetrad
are already present (as left invariant vectors) and do not need to be tacked
on. The Killing form provides a natural background metric.

We have then the space of vector fields on U(3, 2) as the fundamental
objects. These decompose into horizontal vectors in the tangent space of
U(3, 2)/U(3, 1)× U(1) and the vertical vectors in U(3, 1)× U(1).

The vertical vectors can be thought of as a supplement to the tangent
space of space-time in the sense that Einstein and Mayer [12] and Rosen
and Tauber [46] considered bundles of 4 + n dimensional vector spaces over
space-time. The number of extra dimensions is arbitrary in their approach
but is fixed geometrically here.

The vectors interact via Lie bracket.
The space of all vector fields generates the group of diffeomorphisms. The

group of diffeomorphisms is related to the flow of a perfect fluid [9]. Gravi-
tation has been described as a gauge theory of the group of diffeomorphisms.

With the 1-forms ωµ dual to the basis Xµ, we have

ωµZ = B (Xµ, Z)

where B is the Killing form.
Following Hermann [27], the Ricci-Tensor is defined by:

RI (X, Y )Z =
∑

µ
ωµR (Xµ, X)Z

=
∑

µ
B (Xµ, R (Xµ, X)Z)

=
∑

µ
B (Xµ, [[Xµ, X], Z])

= −
∑

µ
B ([Xµ, [Xµ, X]], Z)

= −B
(∑

µ
[Xµ, [Xµ, X]], Z

)
For the Einstein equations, the range of the sum is one to four. It is not

clear if we should extend the range of the indices to include the space-time Yµ,
or if we include all the indices of the this last sum:

∑
µ[Xµ, [Xµ, is essentially

(a multiple of ) the Casimir operator of u(3, 2). The Casimir operator is an
invariant of U(3, 2). Thus the Einstein equations could be written as:

RI (X, Y ) =
∑

g
ωµR (Xµ, X)Z = 0
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Where the sum is over all the indices of g = u(3, 2).
Which can be decomposed as∑

h
ωµR (Xµ, X)Z +

∑
T
ωµR (Xµ, X)Z = 0

where the sum over h is the sum over the indices of h = u(3, 1) × u(1) and
the sum over T is the sum over the tangent space of U(3, 2)/U(3, 1)× U(1).

Following Lurcat [37] this seems to require the Einstein Equations on the
full group manifold. It seems reasonable to replace the Ricci tensor by the
Casimir operator.

This presentation has shown us how to find the right hand side of the
Einstein equations.

16 The Geometry of Elementary Particle In-

teractions

Now let us consider one of the secondary interactions:

e−n̄↔ p−ν

In the principle fiber bundle U(3, 2)→ U(3, 2)/U(3, 1)×U(1), the bracket
of two vectors in the base space yields a vector in the bundle. The vectors
in the bundle represent particles and in this instance:

e− = X14 − iY14 =

−1

2
[X15 − iY15, X45 + iY45]

n̄ = X23 + iY23

1

2
[X25 + iY25, X35 − iY35]

p− = X34 − iY34

−1

2
[X35 − iY35, X45 + iY45]

ν = X12 − iY12

57



1

2
[X15 − iY15, X25 + iY25]

Thus, the interaction of e− with n̄ (dropping the numerical factors) would
go:

[X15 − iY15, X45 + iY45]⊗ [X25 + iY25, X35 − iY35]

= (X15 − iY15)⊗ (X45 + iY45)⊗ (X25 + iY25)⊗ (X35 − iY35)

= (X15 − iY15)⊗ (X25 + iY25)⊗ (X45 + iY45)⊗ (X35 − iY35)

= (X15 − iY15)⊗ (X25 + iY25)⊗ (X45 + iY45)⊗ (X35 − iY35)

= [X15 − iY15, X25 + iY25]⊗ [X45 + iY45, X35 − iY35]

Beginning with e− and n̄ and following the rules for exchange of field
quanta we arrived at p− and ν. Thus, the change in particle type may be
interpreted as an interaction involving the exchange of the field quanta. In
the same way, all of the above interactions may be interpreted as interactions
involving the exchange of the field quanta.

Thus, it seems that particles can be interpreted as being composed of
the background field quanta and the dynamics required is the dynamics of
the background field, exactly as Einstein envisioned. Except now, the back-
ground involved is that of U(3, 2), not just space-time, and there are five
interactions involved, not just gravitation. Just as Lurcat [37] used the group
manifold of the Poincaré Group to obtain a dynamical role for spin, so here
we use the group manifold of U(3, 2) to obtain the a dynamical role for all
the quantum numbers of a totally unified field theory.

17 Complex structures

When we went from the matrix representation to the differential operator rep-
resentation, the complex number i in the matrix representation was replaced
by a differential operator, in fact it was replaced by 5 different operators,
depending on its location on the diagonal.

The complex number i can be considered to be the infinitesimal generator
of the unit circle as a Lie group since

eiθ = cos θ + i sin θ
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Now, if
x = r cos θ
y = r sin θ
tan θ = y

x

Then the operator
∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y

= −r sin θ
∂

∂x
+ r cos θ

∂

∂y

= −y ∂
∂x

+ x
∂

∂y

can also be viewed as the infinitesimal generator of the unit circle U(1).
This seems to imply that in some of the differential equations of physics

the factor of i should be replaced by an operator of the form

−y ∂
∂x

+ x
∂

∂y

as in these equations.
This leads us to a study of complex structures. An almost complex struc-

ture on a vector space V is a linear automorphism

J : V → V

satisfying
J2 = −1

From the characteristic equation of J ,

1 + J2 = (1 + iJ) (1− iJ) = 0

we conclude that J has two eigenvalues, i and −i.
To obtain the eigenvectors of J we must extend the domain of J to the

complexification of V , VC = C ⊗ V , for v ∈ V , we can form the vector
(1 + iJ) v = v + iJv then we calculate:

J (v + iJv) = Jv + iJ2v = Jv − iv = −i (v + iJv) ,

Likewise using (1− iJ) v = v − iJv

J (v − iJv) = Jv − iJ2v = Jv + iv = i (v − iJv, )
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Thus V is decomposed into two subspaces according the eigenvalue. Since

v + iJv = (1 + iJ) v,

we can define
V− = (1 + iJ)V.

This is the subspace of VC with eigenvalue −i.
Likewise,

V+ = (1− iJ)V

is the subspace of VC with eigenvalue +i.
But another characterization is possible since

(1− iJ) (1 + iJ)V = (1 + iJ) (1− iJ)V =
(
1− i2J2

)
V = 0

Thus V− = ker (1− iJ) and V+ = ker (1 + iJ) .

(1− iJ)2 V =
(
1− 2iJ + i2J2

)
V = (1− 2iJ + 1)V = 2 (1− iJ)V

Thus

P+ =
(1− iJ)

2

is a projection of V onto V+. And:

P− =
(1 + iJ)

2
.

is a projection of V onto V−.
This is all standard fare.

18 The Complex Structure of QAdS

In the geometry of QAdS, an almost complex structure is given by

Jv = [γ5, v]

with

γ5 =

(
x5

∂

∂y5

− y5
∂

∂x5

)
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The tangent space of QAdS is spanned by:

X15 = x1
∂

∂x5

+ x5
∂

∂x1

+ y1
∂

∂y5

+ y5
∂

∂y1

X25 = x2
∂

∂x5

+ x5
∂

∂x2

+ y2
∂

∂y5

+ y5
∂

∂y2

X35 = x3
∂

∂x5

+ x5
∂

∂x3

+ y3
∂

∂y5

+ y5
∂

∂y3

X45 = x4
∂

∂x5

− x5
∂

∂x4

+ y4
∂

∂y5

− y5
∂

∂y4

Y15 = x1
∂

∂y5

+ y5
∂

∂x1

− x5
∂

∂y1

− y1
∂

∂x5

Y25 = x2
∂

∂y5

+ y5
∂

∂x2

− x5
∂

∂y2

− y2
∂

∂x5

Y35 = x3
∂

∂y5

+ y5
∂

∂x3

− x5
∂

∂y3

− y3
∂

∂x5

Y45 = x4
∂

∂y5

− y5
∂

∂x4

+ x5
∂

∂y4

− y4
∂

∂x5

A direct calculation shows that:

[γ5, Xi5] = −Yi5

[γ5, Yi5] = Xi5

[γ5, [γ5, Xi5]] = −Xi5

[γ5, [γ5, Yi5]] = −Yi5

Thus, ([γ5, ) defines an almost complex structure.
Theorem: If an almost complex structure on a reductive homogeneous

space is defined by Jv = [γ, v], then J is integrable.
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Proof: On a homogeneous space, G/H, the almost complex structure J
is integrable iff the torsion tensor of J:

S(X, Y ) = −2([X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ])

is an element of the Lie algebra of H (Kobayashi and Nomizu [31], p. 217).
In the case at hand,

S(X, Y ) = −2([X, Y ] + [γ5, [[γ5, X], Y ]] + [γ5, [X, [γ5, Y ]]]− [[γ5, X], [γ5, Y ])

We will examine each term in turn:
Since X, Y ∈ T (G/H) and since the space is reductive, [X, Y ] ∈ H.
Since X, Y ∈ T (G/H) and J is an A.C.S.[γ5, X] ∈ T (G/H) and since the

space is reductive, [[γ5, X], Y ] ∈ H, then [γ5, [[γ5, X], Y ]] = 0.
For the third term: [γ5, Y ] ∈ T (G/H) implies [X, [γ5, Y ]] ∈ H and thus

[γ5, [X, [γ5, Y ]]] = 0.
The last term is treated in the same manner:
Since X, Y ∈ T (G/H), [γ5, X] ∈ T (G/H) and [γ5, Y ] ∈ T (G/H) then

[[γ5, X], [γ5, Y ] ∈ H since the space is reductive.
Thus each term is in H so the sum is in H and the almost complex

structure is integrable.
Theorem: If an almost complex structure on a homogeneous space is

defined by Jv = [γ, v], then the action of etJ is given by:

exp (t[γ, ) v = (cos t) v + (sin t) [γ, v]

Furthermore,

exp
(
π

2
J
)

= exp
(
π

2
[γ,
)

is also an almost complex structure.
The proof is exactly that of proving eiθ = cos θ + i sin θ.
Corollary: exp (2nπJ) = 1 and exp ((2n+ 1) πJ) = −1
Corollary: exp(2nπJ + π

2
J) and exp((2n + 1)πJ + (π

2
J)) define complex

structures.
It is an exercise to show that the operator:

γ1 + γ2 + γ3 + γ4 + γ5

satisfies
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[γ1 + γ2 + γ3 + γ4 + γ5, X] = 0

for all X ∈ T (QAdS) and thus the operator:

γ1 + γ2 + γ3 + γ4

defines another complex structure. At this point it should be no surprise
that other complex structures are lurking in the background.

Define
ι (XI5) = YI5 1 ≤ i ≤ 3

ι (YI5) = −XI5

ι (X45) = −Y45

ι (Y45) = X45

Clearly, ι is defined by bracket with:

γ1 + γ2 + γ3 − γ4

And we can define other complex structures by changing the other signs:

±γ1 ± γ2 ± γ3 ± γ4

Then we can exponentiate each γi individually to obtain different winding
numbers for each γi. This gives us an infinite number of complex structures
on QAdS.

In the standard theory of complex structures on a manifold [31],

A real vector space with a complex structure J can be turned
into a complex vector space by defining scalar multiplication by
complex numbers as follows:

(a+ ib)X = aX + bJX

There are problems implementing this procedure in our setting. In the
standard treatment of Lie Algebras, multiplying a generator by i changes
it from compact to noncompact and vice-versa. That does not hold for
the complex structure defined by bracket with γ5, both X15 and [γ5, X15] =
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−Y15 are noncompact, while both X45 and [γ5, X45] = −Y45 are compact.
Furthermore, we have multiple complex structures, which one would we have
replace multiplication by i? The standard mathematics fails us at this point.
We need all these complex structures and we need to have eigenvectors with
i as an eigenvalue.

In [35], the operator ix5
∂

∂x5
was used to define a complex structure on

QAdS. That is not a viable option in the present setting.
Define:

κ5 = i

(
x5

∂

∂x5

+ y5
∂

∂y5

)

Then
[κ5, X15] =

[i

(
x5

∂

∂x5

+ y5
∂

∂y5

)
, x1

∂

∂x5

+ x5
∂

∂x1

+ y1
∂

∂y5

+ y5
∂

∂y1

]

= i

(
x5

∂

∂x1

+ y5
∂

∂y1

− x1
∂

∂x5

− y1
∂

∂y5

)
[κ5, [κ5, X15]] =

[i

(
x5

∂

∂x5

+ y5
∂

∂y5

)
, i

(
x5

∂

∂x1

+ y5
∂

∂y1

− x1
∂

∂x5

− y1
∂

∂y5

)

= −x1
∂

∂x5

− x5
∂

∂x1

− y1
∂

∂y5

− y5
∂

∂y1

[κ5, Y15] =

[i

(
x5

∂

∂x5

+ y5
∂

∂y5

)
, x1

∂

∂y5

+ y5
∂

∂x1

− x5
∂

∂y1

− y1
∂

∂x5

] =

i

(
−x1

∂

∂y5

+ y5
∂

∂x1

− x5
∂

∂y1

+ y1
∂

∂x5

)
[κ5, [κ5, Y15]] =

[i

(
x5

∂

∂x5

+ y5
∂

∂y5

)
, i

(
−x1

∂

∂y5

+ y5
∂

∂x1

− x5
∂

∂y1

+ y1
∂

∂x5

)
] =
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−x1
∂

∂y5

− y5
∂

∂x1

+ x5
∂

∂y1

+ y1
∂

∂x5

= −Y15

Indeed, while the operator squared is -1, there is a problem: in the in-
termediate step, we left the tangent space of QAdS. This operator does not
define a complex structure.

Define the operators:

κ1 = i

(
x1

∂

∂x1

+ y1
∂

∂y1

)

κ2 = i

(
x2

∂

∂x2

+ y2
∂

∂y2

)

κ3 = i

(
x3

∂

∂x3

+ y3
∂

∂y3

)

κ4 = i

(
x4

∂

∂x4

+ y4
∂

∂y4

)
It is a exercise to show that the operator:

K = κ1 + κ2 + κ3 + κ4 + κ5

satisfies:
[K,T ] = 0

for all T ∈ u(3, 2). This is i times the u(3, 2) version of the dilation operator.
The factor of i is necessary in order to make the operator compact. Since
bracketing with the individual κi take us out of the tangent space, it is not
obvious whether or not the sum, e.g. the dilation operator should be allowed.

If we allow K, we would then have two diagonal operators, i.e. two first
order operators which commute with all of u(3, 2).

γ1 + γ2 + γ3 + γ4 + γ5 = (2)

x1
∂

∂y1

− y1
∂

∂x1

+ x2
∂

∂y2

− y2
∂

∂x2

+ x3
∂

∂y3

− y3
∂

∂x3

+x4
∂

∂y4

− y4
∂

∂x4

+ x5
∂

∂y5

− y5
∂

∂x5

The existence of two operators which commute with every element of
u(3, 2) make it clear that matix methods are inadequate for our study.
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This result is surprising enough but now that a crack has appeared, the
dam bursts:

For any value of n, the operator:

(γ1)
n + (γ2)

n + (γ3)
n + (γ4)

n + (γ5)
n = (3)

(x1
∂

∂y1

− y1
∂

∂x1

)n + (x2
∂

∂y2

− y2
∂

∂x2

)n + (x3
∂

∂y3

− y3
∂

∂x3

)n

+(x4
∂

∂y4

− y4
∂

∂x4

)n + (x5
∂

∂y5

− y5
∂

∂x5

)n

commutes with all of u(3, 2).

19 The Euler Degree Operator

The Euler degree operator has been misidentified in Twistor Theory. Let us
begin with a quote from Roger Penrose’s recent book, The Road To Reality
[43], page 984:

The operator

Y = Zα ∂

∂Zα

is called the Euler homogeneity operator.

Unfortunately, this statement is not true, the problem is in the difference
between use of complex variables and real variables. Let us switch to real
variables and define

YR = Xα ∂

∂Xα

Then YR is the Euler Degree operator, a.k.a. the Euler homogeneity opera-
tor, henceforth just Euler Operator.

YR(Xβ)n = Xα ∂

∂Xα
(Xβ)n = n(Xβ)n

The problem with applying Penrose’s definition can be illustrated by ap-
plying it to ZZ̄:

YZZ̄ = Zα ∂

∂Zα
ZZ̄ = ZZ̄
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But we have
ZZ̄ = x2 + y2

Which is clearly of degree 2. However, with the real polynomial x2 + y2, the
correct Euler operator is

YR = x
∂

∂x
+ y

∂

∂y

Then we have

YR(x2 + y2) = (x
∂

∂x
+ y

∂

∂y
)(x2 + y2) = 2(x2 + y2)

In order to obtain the correct result in terms of complex variables, we must
have:

YC = Zα ∂

∂Zα
+ Z̄α ∂

∂Z̄α

Converting to x and y variables:

Z
∂

∂Z
=

1

2
(x+ iy)(

∂

∂x
− i ∂

∂y
)

=
1

2
(x

∂

∂x
− ix ∂

∂y
+ iy

∂

∂x
+ y

∂

∂y
)

=
1

2
(x

∂

∂x
+ y

∂

∂y
+ i(y

∂

∂x
− x ∂

∂y
))

Likewise:

Z̄
∂

∂Z̄
=

1

2
(x− iy)( ∂

∂x
+ i

∂

∂y
)

=
1

2
(x

∂

∂x
+ ix

∂

∂y
− iy ∂

∂x
− y ∂

∂y
)

=
1

2
(x

∂

∂x
+ y

∂

∂y
− i(y ∂

∂x
− x ∂

∂y
))

And as advertised, we end up with

Z̄
∂

∂Z̄
+ Z̄

∂

∂Z̄
= x

∂

∂x
+ y

∂

∂y
= YR (4)

We can construct five such operators:

Z1
∂

∂Z1

+ Z̄1
∂

∂Z̄1

= x1
∂

∂x1

+ y1
∂

∂y1

(5)
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Z2
∂

∂Z2

+ Z̄2
∂

∂Z̄2

= x2
∂

∂x2

+ y2
∂

∂y2

(6)

Z3
∂

∂Z3

+ Z̄3
∂

∂Z̄3

= x3
∂

∂x3

+ y3
∂

∂y3

(7)

Z4
∂

∂Z4

+ Z̄4
∂

∂Z̄4

= x4
∂

∂x4

+ y4
∂

∂y4

(8)

Z5
∂

∂Z5

+ Z̄5
∂

∂Z̄5

= x5
∂

∂x5

+ y5
∂

∂y5

(9)

We recognize these operators, up to the factor of i, as the κI previously
constructed.

If instead of adding the two operators, we subtract, we obtain:

Z
∂

∂Z
− Z̄ ∂

∂Z̄
= i(y

∂

∂x
− x ∂

∂y
)) (10)

This is the operator which generates rotations in the x− y plane.
We obtain all the xI − yI rotations in five complex dimensions:

Z1
∂

∂Z1

− Z̄1
∂

∂Z̄1

= i(y1
∂

∂x1

− x1
∂

∂y1

)) (11)

Z2
∂

∂Z2

− Z̄2
∂

∂Z̄2

= i(y2
∂

∂x2

− x2
∂

∂y2

)) (12)

Z3
∂

∂Z3

− Z̄3
∂

∂Z̄3

= i(y3
∂

∂x3

− x3
∂

∂y3

)) (13)

Z4
∂

∂Z4

− Z̄4
∂

∂Z̄4

= i(y4
∂

∂x4

− x4
∂

∂y4

)) (14)

Z5
∂

∂Z5

− Z̄5
∂

∂Z̄5

= i(y5
∂

∂x5

− x5
∂

∂y5

)) (15)

We recognize these operators as the same operators as the γI , up to signs
and the factor of i.
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20 Dual Eigenvectors

We have two commuting complex structures on the tangent space of QAdS.
Since we will encounter this situation in other cases, we will treat the general
case of dual eigenvectors. Given two commuting complex structures on a
vector space V, we construct a vector which is simultaneously an eigenvector
of both operators.

Call the complex structures J1 and J2. Previously we saw that v+ iJ1v is
an eigenvector of J1 and v+iJ2v is an eigenvector of J2. We simply substitute
the eigenvector of J1 into the formula for the eigenvector of J2 to obtain:

v + iJ1v + iJ2 (v + iJ1v) = v + iJ1v + iJ2v − J1J2v

Fortunately, if we substitute the eigenvector of J2 into the formula for the
eigenvector of J1 we obtain the same vector. This is the result for both of the
eigenvalues being minus i. For one eigenvalue of plus i, and one eigenvalue
of minus i we obtain:

v + iJ2v − iJ1 (v + iJ2v) = v + iJ2v − iJ1v + J1J2v

Thus:

J1(v + iJ2v − iJ1v + J1J2v) = J1v + iJ1J2v − iJ1J1v + J1J1J2v)

= J1v + iJ1J2v + iv − J2v) = i(v + iJ2v − iJ1v + J1J2v)

and

J2(v + iJ2v − iJ1v + J1J2v) = J2v + iJ2J2v − iJ2J1v + J2J1J2v)

= J2v − iv − iJ2J1v − J1v) = −i(v + iJ2v − iJ1v + J1J2v)

For both eigenvalues plus i:

v − iJ2v − iJ1 (v − iJ2v) = v − iJ2v − iJ1v − J1J2v

21 Complex geometry without i

The calculations in the last few sections should have left the reader somewhat
uncomfortable. Multiplication by i is not defined in the tangent space and
replacing it by a complex structure is not tenable. The flow generated by

69



a tangent vector X is etX , but what does eitX mean on a curved manifold?
In the operator representation of u(3, 2), we replaced the factors of i by
differential operators. Can we do the same thing here? Since we have several
complex structures available, we will attempt to re-do the sections above
replacing multiplication by i with a second complex structure. So we begin
with two complex structures J1 and J2 defined on TM. Separately, J2

1 = −1
and J2

2 = −1 Thus J1 and J2 have eigenvalues of ±i, which is what we
are trying to avoid. From the two complex structures, we can form J1 ± J2

but these operators also have eigenvalues ±i. That leaves us looking at the
product J1J2 which satisfies:

(J1J2)
2 = 1

The characteristic equation is

(J1J2)
2 − 1 = 0

which factors:
(J1J2 − 1) (J1J2 + 1) = 0

Imitating the construction of the eigenspaces in the complex case, let us
define:

V+ = {J1J2v + v|v ∈ TM}

We calculate:
J1J2 (J1J2v + v) = (v + J1J2v)

So V+ is the eigenspace with eigenvalue positive 1.

V− = {J1J2v − v|v ∈ TM}

Another short calculation:

J1J2 (J1J2v − v) = (v − J1J2v) = − (J1J2v − v)

shows that V− is the eigenspace with eigenvalue negative 1.
As in the complex case, we have the projections:

P− =
1

2
(J1J2 − 1)
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P+ =
1

2
(J1J2 + 1)

Thus it seems that at least some of the results of complex geometry can
be recovered without multiplying by i.

The interesting results appear when we apply the above calculations to
QAdS.

On TQAdS, define
J1v = [γ5, v]

and
J2v = −[γ1 + γ2 + γ3 + γ4, v]

The minus sign is necessary to make the signs of the projections work. If J is
a complex structure, so is −J , interchanging −J and J interchanges P+ and
P−. A few calculations seem in order to clarify matters. In order to calculate

P−X15 =
1

2
(J1J2 − 1)X15

We first calculate J1J2X15

[γ5,−[γ1 + γ2 + γ3 + γ4,

x1
∂

∂x5

+ x5
∂

∂x1

+ y1
∂

∂y5

+ y5
∂

∂y1

]]

= −[

(
x5

∂

∂y5

− y5
∂

∂x5

)
, [

(
x1

∂

∂y1

− y1
∂

∂x1

)
+

(
x2

∂

∂y2

− y2
∂

∂x2

)
+

(
x3

∂

∂y3

− y3
∂

∂x3

)

+

(
x4

∂

∂y4

− y4
∂

∂x4

)
, x1

∂

∂x5

+ x5
∂

∂x1

+ y1
∂

∂y5

+ y5
∂

∂y1

]]

= −
(
x1

∂

∂x5

+ x5
∂

∂x1

+ y1
∂

∂y5

+ y5
∂

∂y1

)
Thus P−X15 = −X15, likewise P−XI5 = −XI5 , P−YI5 = −YI5 and P+XI5 =
0 , P+YI5 = 0. Surprisingly, this is where the VIJ and WIJ make their
appearance: P−VI5 = 0, P−WI5 = 0 and P+VI5 = VI5 , P+WI5 = WI5.

Thus, we can characterize u(3, 2) as those elements of Zρ2 which com-
mute with the diagonal operator. Since the diagonal operator is the dilation
operator and used in many models as a Hamiltonian. This discussion has
shed some light on the mathematical meaning of the VIJ and WIJ but has
not lead to any understanding of the physics they might generate.
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22 The Schrödinger Equation

If we apply the formalism of complex structures to the Lie algebra u(3, 2),
we run into a problem with the projection

P+ =
(1− iJ)

2

since 1 is not an element of the Lie Algebra. However, suitably normalized,
the quadratic Casimir operator of u(3, 2) is the identity operator, so we define
the projection:

P+ =
(CG − iJ)

2

where CG is the normalized Casimir operator of G = u(3, 2). Allowing the
operator to act on an object we will call ψ. we obtain:

P+ψ =
(CG − iJ)

2
ψ = ψ

(CG − iJ)ψ = 2ψ

Now in order to specialize to the case of QAdS = U(3, 2)/U(3, 1)×U(1),
we need to decompose the Casimir operator of U(3, 2) as a sum. Let H =
U(3, 1)× U(1) then CG = CH + ∆. With CH being the Casimir operator of
H and ∆ being the Laplace-Beltrami operator on QAdS. Then our equation
becomes:

(CH + ∆− iJ)ψ = 2ψ

which has obvious similarities to the Schrödinger equation. The question
then becomes which complex structure do we use? Suppose now we take
advantage of the two complex structures on the tangent space of QAdS and
replace the iJ by J1J2 to obtain:

(CG − J1J2)ψ = 2ψ

To be more specific, we would take J1 = [γ1 + γ2 + γ3 + γ4, and J2 = [γ5.
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23 Dynamics

We have two different diagonal operators and we look at the sum:

H = γ1 + γ2 + γ3 + γ4 + γ5 + κ1 + κ2 + κ3 + κ4 + κ5

=

(
x1

∂

∂y1

− y1
∂

∂x1

)
+

(
x2

∂

∂y2

− y2
∂

∂x2

)
+

(
x3

∂

∂y3

− y3
∂

∂x3

)
+

(
x4

∂

∂y4

− y4
∂

∂x4

)
+

(
x5

∂

∂y5

− y5
∂

∂x5

)
+ i

(
x1

∂

∂x1

+ y1
∂

∂y1

)
+

i

(
x2

∂

∂x2

+ y2
∂

∂y2

)
+ i

(
x3

∂

∂x3

+ y3
∂

∂y3

)
+

i

(
x4

∂

∂x4

+ y4
∂

∂y4

)
+ i

(
x5

∂

∂x5

+ y5
∂

∂y5

)
Note that on the interchange of xi and yi, the κi are invariant while the

γi change sign.
Up to sign and the factor of 1

2
, this is just

∑
Z̄I

∂

∂Z̄I

=

=
1

2

∑
(xI

∂

∂xI

+ yI
∂

∂yI

− i(yI
∂

∂xI

− xI
∂

∂yI

))

This makes sense since a function in one variable is analytic if

∂

∂Z̄I

f = 0

Just as the dilation operator provided the dynamics for Fubini, Hanson
and Jackiw [17], this operator should provide the dynamics in the current
setting.
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24 Compact orbits

The hallmark of the compact generators in u(3, 2) is that the square of the
operator has a negative eigenvalue. Bracketing with a compact operator
oscillates between two values, one has a plus, the other a negative.

As an example, we begin with

[X12, X15] = −X25 [X12, X25] = X15

Now we go on to compute the higher powers:

[X12, [X12, X15]] = [X12,−X25] = −X15

[X12, [X12, [X12, X15]]] = [X12, [X12,−X25]] = [X12,−X15] = X25

[X12, [X12, [X12, [X12, X15]]]] = [X12, [X12, [X12,−X25]]]

= [X12, [X12,−X15]] = [X12, X25] = X15

By induction we have:

([X12, )
4nX15 = X15

([X12, )
4n+1X15 = −X25

([X12, )
4n+2X15 = −X15

([X12, )
4n+3X15 = X25

From which it follows that:

expθ ([X12, )X15 = (cos θ)X15 − (sin θ)X25

Again by induction,
([X12, )

4nX25 = X25

([X12, )
4n+1X25 = X15

([X12, )
4n+2X25 = −X25

([X12, )
4n+3X25 = −X15

From which it follows that:

exp (θ[X12, )X25 = (cos θ)X25 + (sin θ)X15
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By combining the above, we obtain:

exp (θ[X12, ) (X15 + iX25) = exp (θ[X12, )X15 + iexp (θ[X12, )X25

= (cos θ)X15 − (sin θ)X25 + i (cos θ)X25 + i (sin θ)X15

= (cos θ)X15 + i (sin θ)X15 − (sin θ)X25 + i (cos θ)X25

= (cos θ + i sin θ)X15 + i (cos θ + i sin θ)X25

= eiθ (X15 + iX25)

exp (θ[X12, ) (X15 − iX25) = exp (θ[X12, )X15 − iexp (θ[X12, )X25

= (cos θ)X15 − (sin θ)X25 − i (cos θ)X25 − i (sin θ)X15

= (cosθ)X15 − i (sinθ)X15 − (sin θ)X25 − i (cos θ)X25

= (cos θ − i sin θ)X15 − i (cos θ − i sin θ)X25

= e−iθ (X15 − iX25)

The following commutation relations exhibit the same pattern of one
negative and one positive and hence have the same sort of orbits:

[X12, Y15] = −Y25 [X12, Y25] = Y15

[X13, X15] = −X35 [X13, X35] = X15

[X13, Y15] = −Y35 [X13, Y35] = Y15

[X23, X25] = −X35 [X23, X35] = X25

[X23, Y25] = −Y35 [X23, Y35] = Y25

[Y12, Y15] = −X25 [Y12, X25] = Y15

[Y12, Y25] = −X15 [Y12, X15] = Y25

[Y13, Y15] = −X35 [Y13, X35] = Y15

[Y13, Y35] = −X15 [Y13, X15] = Y35

[Y23, Y25] = −X35 [Y23, X35] = Y25

[Y23, Y35] = −X25 [Y23, X25] = Y35

[γ1, Y15] = −X15 [γ1, X15] = Y15
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[γ2, Y25] = −X25 [γ2, X25] = Y25

[γ3, Y35] = −X35 [γ3, X35] = Y35

[γ4, Y45] = −X45 [γ4, X45] = Y45

[γ5, X15] = −Y15 [γ5, Y15] = X15

[γ5, X25] = −Y25 [γ5, Y25] = X25

[γ5, X35] = −Y35 [γ5, Y35] = X35

[γ5, X45] = −Y45 [γ5, Y45] = X45

25 Noncompact generators

The hallmark of a noncompact operator in u(3, 2) is that the square of the
operator has a positive eigenvalue. Thus, the signs in front of the two op-
erators must agree. When the generator is noncompact, then we obtain a
different set of commutators and a different sort of orbit:

[X14, X15] = X45 [X14, X45] = X15

The pattern is both operators on the right have positive signs.

[X14, [X14, X15]] = [X14, X45] = X15

[X14, [X14, [X14, X15]]] = [X14, [X14, X45]] = [X14, X15] = X45

[X14, [X14, [X14, [X14, X15]]]] = [X14, [X14, [X14, X45]]]

= [X14, [X14, X15]] = [X14, X45] = X15

By induction
([X14, )

2nX15 = X15

([X14, )
2n+1X15 = X45

From which it follows that:

exp (t[X14, )X15 = (cosh t)X15 + (sinh t)X45

Likewise,
exp (t[X14, )X45 = (cosh t)X45 + (sinh t)X15
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Summing:

exp (t[X14, ) (X15 +X45) = (cosh t)X15+(sinh t)X45+(cosh t)X45+(sinh t)X15

= (cosh t)X15 + (sinh t)X15 + (sinh t)X45 + (cosh t)X45

= (cosh t+ sinh t)X15 + (sinh t+ cosh t)X45

= et (X15 +X45)

The same pattern is repeated with the two positives in the following
commutation relations which then lead to the same type of orbit:

[X14, Y15] = Y45 [X14, Y45] = Y15

[X24, X25] = X45 [X24, X45] = X25

[X24, Y25] = Y45 [X24, Y45] = Y25

[X34, Y35] = Y45 [X34, Y45] = Y35

[Y24, Y25] = X45 [Y24, X45] = Y25

[Y34, Y35] = X45 [Y34, X45] = Y35

[Y14, Y15] = X45 [Y14, X45] = Y15

The final pattern has both operators on the right with negative signs:

[Y14, Y45] = −X15 [Y14, X15] = −Y45

Which yields a different orbit structure:

[Y14, [Y14, Y45]] = [Y14,−X15] = Y45

[Y14, [Y14, [Y14, Y45]]] = [Y14, [Y14,−X15]] = [Y14, Y45] = −X15

[Y14, [Y14, [Y14, [Y14, Y45]]]] = [Y14, [Y14, [Y14,−X15]]]

= [Y14, [Y14, Y45]] = [Y14,−X15] = Y45

By induction
([Y14, )

2n Y45 = Y45

([Y14, )
2n+1 Y45 = −X15

From which it follows that:
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exp (t[Y14, )X15 = (cosh t)X15 − (sinh t)Y45

Likewise,
exp (t[Y14, )Y45 = (cosh t)Y45 − (sinh t)X15

Summing:

exp (t[Y14, ) (X15 + Y45) = (cosh t)X15−(sinht)Y45+(cosh t)Y45−(sinh t)X15

= (cosh t− sinh t)X15 + (cosh t− sinh t)Y45

= e−t (X15 + Y45)

The following commutation relations exhibit the same behavior and hence
have the same type of orbits:

[Y24, Y45] = −X25 [Y24, X25] = −Y45

[Y34, Y45] = −X35 [Y34, X35] = −Y45
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26 The Wave Functions

Let us consider the problem of an electron interaction with a proton and
include the wave functions. The electron is modeled as

ψ14(X14 − iY14)

and the proton as
ψ34(X34 + iY34)

The system of proton interacting with electron is given by the bracket:

[ψ14(X14 − iY14), ψ34(X34 + iY34)] = (16)

ψ14ψ34[(X14 − iY14), X34 + iY34]+

[ψ14((X14 − iY14)ψ34)X34 + iY34]−

ψ34(X34 + iY34ψ14)(X14 − iY14)

In the expansion of (16), the first term represents a hydrogen atom.
The second term represents a proton moving in the potential of an elec-

tron.
The third term represents an electron moving in the potential of a proton.
Comparing (16) with the solution to the Dirac equation found earlier

(We showed that if A is an eigenfunction of H with eigenvalue e and E is an
eigenfunction of H with eigenvalue m, then: ψ = Eexp(A) is a solution to
the equation Hψ = (eA+m)ψ, we see that if ψ = Eexp(A) is the “electron
moving in the potential of a proton” and so is

ψ34(X34 + iY34)ψ14(X14 − iY14, )

then we must identify exp(A) as the wave function of the proton and ψ34(X34+
iY34)ψ14 must be E. As expected, the potential A due to the proton is related
to the wavefunction ψ34 of the proton and A is identified as an eigenfunc-
tion of the dynamical operator H, thus ψ34 is a generalized eigenfunction of
H. Not surprisingly, we are also forced to take ψ14, the wavefunction of the
electron as an eigenfunction of H. If we were to analyze the second term in
the expansion instead, a parallel analysis shows that the wavefunction of the
electron is the exponential of the classical potential of the electron. When all
the details are put in we must exponentiate some constant times the classical
potential to have a dimensionless quantity in the exponential. If the wave
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function, i.e., the field of an elementary particle is the exponential of the
classical potential then we see why we cannot add wave functions, instead
we want to add potentials and hence we need to multiply wave functions (or
take the Lie bracket).

This has parallels in standard quantum theory, where as Wheeler [55]
points out “the exponent in the quantum mechanical propagator is (i/h̄) times
the classical action.”

It seems from this analysis, that ‘wave mechanics’ was only an approximation—
considering a classical point particle moving in the potential due to another.
Now we must consider the problem of the ‘potential of an electron moving
in the potential of a proton’. The need for such a model was suggested by
Sachs [48]:

How can one accept the dualism of both the continuous field
concept—to describe a part of the actual physical system called
“influencer” –and the atomistic concept– to describe the rest of
the system– the ‘test body’ called “influenced?”. This division
seems to me to be logically dichotomous.

Aharonov and Bohm [3] proposed

. . . that, in quantum mechanics, the fundamental physical enti-
ties are the potentials, while the fields are derived from them by
differentiation.

This has been experimentally confirmed, so the use of the potential as
fundamental is natural.

27 On the use of Symmetries in Physics

The theory of matter introduced here uses symmetries differently than other
theories and it seems to be a useful exercise to discuss those differences. In
this discussion, I will follow the article “About Symmetries in Physics” by
Gieres [18]. I chose this article simply because I had the idea of doing this
comparison while reading it.

Let us begin with Gieres’ definition:
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For the classification of symmetries, one distinguishes between
those which operate on space-time coordinates, the so-called ge-
ometric symmetries and those which do not affect them, the in-
ternal symmetries.

These statements are not true in the present model. Since we view the
space-time coordinates as a background field and the ‘internal symmetries’
as representing the particles, we have to allow the ‘internal symmetries’ to
interact with the space-time coordinates so that the particles can interact
with the background field. Here, all symmetries are space-time symmetries.

Gieres goes on to discuss the relation between symmetries and conserva-
tion laws as reflected in Noether’s theorem:

Covariance of the equations of motion with respect to a con-
tinuous transformation with n parameters implies the existence
of n conserved quantities (‘charges’ or ‘integrals of motion’), i.e.
it implies conservation laws.

Gieres fails to mention that Noether’s theorem holds only in Lagrangian
theories. In the present theory, we do not use a Lagrangian and we obtain
even more conserved quantities using the Casimir operators of u(3, 2).

Wigner classifed elementary particles in terms of their mass and spin,
based on representations of the Poincaré group. We have replaced the Poincaré
group with u(3, 2) and classified elementary particles in terms of their four
quantum numbers.

Next Gieres discusses the super Poincaré algebra which extends the Lie
algebra of the Poincaré group to include supersymmetries. We have no need
for supersymmetries since the internal structure of u(3, 2) automatically car-
ries a grading which distinguishes between bosons and fermions. Thus we
have no need for anti-commutators.

The supersymmetry generators are ‘square roots’ of transla-
tion generators.

If we take the Lie bracket of two space-time generators, we obtain an
internal symmetry. For example:

[X15, X45] = −X14

81



To return to the space-time, we must bracket again: Continuing with the
same example:

[X15, [X15, X45]] = −[X15, X14] = X45

To remain in the base, perhaps we should take all the standard second
order equations of physics and turn them into fourth order!

In gauge theories, such as Yang-Mills, the ‘ordinary derivative’ ∂µ is re-
placed by the covariant derivative ∂µ +Aµ in our case the Lie derivative with
respect to Xij is replaced by the Lie derivative with respect to Xij + iYij

which is very similar in form to the covariant derivative.

28 The Meaning of Quantum Gravity

In the previous section we discussed how the present theory differs from the
standard approach in the use of symmetries. Here we will look at some other
approaches to quantum gravity and discuss the differences and similarities.
In the first part of this discussion, we will follow the recent book by Rovelli
[47].

We have learned from GR that spacetime is dynamical and we
have learned from QM that any dynamical entity is made up of
quanta and can be in probabilistic superposition states. [47](page
4)

For reasons previously discussed I strongly disagree with the concept of
‘probabilistic superposition states.’ But moreover, all the dynamics has been
done in the tangent space (The Lie algebra) the space-time itself is not dy-
namical.

The fact is that we do have plenty of information about quan-
tum gravity, because we have QM and we have GR. Consistency
with QM and GR is an extremly strict constraint. [47](page 5)

Despite Rovelli’s affirmation of QM and GR, we have shown that both
had to be modified to obtain our unification. It is impossible for any theory
to be consistent with both QM and GR since QM and GR are inconsistent.

While there are many differences, we will discuss only a few. Rovelli
correctly points out that:
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GR is the discovery that spacetime and the gravitational field
are the same entity. What we call “spacetime” is itself a physical
object, in many respects similar to the electromagnetic field. We
can say that GR is the discovery that there is no spacetime at all.
What Newton called “space,” and Minkowski called “spacetime,”
is unmasked: it is nothing but a dynamical object- the gravita-
tional field -in a regime in which we neglect its dynamics.. . . the
Universe is not made up of fields on spacetime; it is made up of
fields on fields. [47](page 9)

In the model presented here, the gravitational field is a vector field on
the space-time, it is not the same entity as space-time. The problem is with
Einstein’s use of the metric as fundamental. Within GR, it seems that all
vectors have unit length and that if we take

gij(X, Y )

and consider changing the length of the vectors to fX and hY :

gij(fX, hY )

then GR would interpret this as a new metric:

g′ij(X,Y ) = gijfh(X, Y )

Another point of strong disagreement lies with Rovelli’s basic idea:

No unification. Nowadays, a fashionable idea is that the prob-
lem of quantizing gravity has to be solved together with the prob-
lem of finding a unified description of all interactions. LQG is a
solution of the first problem, not the second. [47](page 13)

The problem is this: There are many problems a complete theory must
solve, how can we know that we have satisfactorily solved one problem until
we have solved them all? Will the solution to a solitary question actually fit
into a unified picture? Like the GUTS program which ignored gravitation
could not possibly lead to a totally unified theory in which the particles
arise from the gravitational field, Rovelli’s LQG program cannot be made
consistent with a unified theory of all interactions.

Rovelli claims:
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The fact that the notions of energy and vacuum are so ambigu-
ous in GR should not be disconcerting. There is nothing essential
in these notions: a quantum theory and its predictions are mean-
ingful also in the absence of them. The notions of energy and
vacuum play an important role in non-general-relativistic physics
just because of the accidental fact that we live in a region of the
Universe which happens to have a peculiar symmetry: transla-
tion invariance in newtonian or special-relativistic time. [47](page
204)

The fact that the conservation of energy, momentum and angular mo-
mentum are not well defined in GR is a very disconcerting notion. Rovelli’s
comments about the specialness of our region of the universe make no sense
whatsoever since all regions of spacetime must be the same and all laws of
physics must be valid everywhere in the universe.

Having exhausted interest in Rovelli’s work, let us turn to Isham. Isham
[28] asked several “Prima Facie Questions in Quantum Gravity” and it be-
hooves us to see how the present theory answers his questions.

Isham notes that:

The deep incompatibilities between the basic structures of
general relativity and of quantum theory have lead many people
to feel that the construction of a consistent theory of quantum
gravity requires a profound revision of the most fundamental ideas
of modern physics. The hope of securing such a paradigm shift
has always been a major reason for studying the subject.

By questioning the foundations of both quantum theory and the general
theory of relativity, we have created what Isham calls ‘an iconoclastic theory.’

Isham asks “How much Spacetime Structure must be Fixed?” and we saw
that the underlying homogeneous space U(3, 2)/U(3, 1)×U(1) must be fixed
in order for the conservation laws to hold. What varies are the vector fields
on U(3, 2). Isham questions “The Role of the Spacetime Diffeomorphism
Group Diff(M)” and we saw that the vector fields on U(3, 2) generate the
Diffeomorphism Group of U(3, 2), not just spacetime.

Isham notes that the ‘problem of time’ arises because “Time is not a phys-
ical observable in the normal sense since it not represented by an operator”,
but in the geometry of our theory, time is an operator.

84



29 Conclusions

After Hertz, in the ‘80s of the last century, had confirmed
the existence of the electro-magnetic waves and displayed their
identity with light by means of his wonderful experiments, the
great intellectual revolution in physics gradually became com-
plete. People slowly accustomed themselves to the idea that the
physical states of space itself were the final physical reality, espe-
cially after Lorentz had shown in his penetrating theoretical re-
searches that even inside ponderable bodies the electro-magnetic
fields are not to be regarded as states of the matter, but essen-
tially as states of the empty space in which the material atoms
are to be considered as loosely distributed.

—Albert Einstein [11]

Each element in the spinor representation of U(3, 2) contains a generator
from a copy of so(3, 2) involving the xi and another generator from another
copy of so(3, 2) involving the yi (yielding two copies of anti-de Sitter space-
time) plus two generators which involve both xi and yj and which generate a
spiral flow between the two copies of space-time giving us a two space-time
structure much like that introduced by Einstein and Rosen [13]:

As u varies from −∞ to +∞ , r varies from +∞ to 2m and
then again from 2m to +∞ . If one tries to interpret the regular
solution (5a) in the space of r , θ, φ, t, one arrives at the following
conclusion. The four-dimensional space is described mathemati-
cally by two congruent parts or “sheets,” corresponding to u > 0
and u < 0, which are joined by a hyperplane r = 2m or u = 0
in which g vanishes. We call such a connection between the two
sheets a “bridge.”

It seems that the present model is requiring us to embrace these “Einstein-
Rosen bridges” in a very dramatic way. There are two copies of space-time,
one in terms of the xI and one in terms of the yI . The fields are excited states
of space-time and the different elementary particles form different types of
bridges between these excited states.

These bridges have also been studied under the name of worm-holes.
However, there is a difference in the present picture, the bridge connects two
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layers of space-time while “The wormhole or handle is envisaged as connect-
ing two very different regions in the same space.” [44] In the last few years
the idea of “two sheets” has been revived with the new name of colliding
“branes”.

Einstein and Rosen glued together two copies of the Schwarzschild singu-
larity to obtain a model of an elementary particle. If that is the true meaning
of the Schwarzschild solution, then the meaning of other solutions is called
into question. Is the model of an expanding universe really modeling the
expansion of the gravitational field of an elementary particle? Is the initial
singularity actually the creation of an elementary particle and not the cre-
ation of the universe? From the work done here, it seems that the answer
to both questions is yes. An elementary particle is really light trapped in
a vibratory state of spacetime, the light cannot get out, in other words, a
particle is a black hole.

The picture presented here is incomplete. In a more complete work, each
of the spinors representing an elementary particle will be multiplied by a
suitable function, related somehow to the spinor derivative representing the
particle family. We have yet to obtain any equations for these wave functions,
other than to suggest that they be eigenfunctions of the Casimir operators
of u(3, 2). Unfortunately, the standard theory of Casimir operators is wrong,
as it predicts neither the correct operators nor the correct number of Casimir
operators [36]. While some progress has been made, we are a long way from
knowing all the generalized Casimir operators of u(3, 2).

The Copenhagen interpretation of the standard quantum mechanics re-
quires point particles. So according to the Copenhagen intepretation, the
elementary particles have no internal structure. The model of matter being
developed here requires that particles be extended objects and that their
wave functions be related to the dynamical flow of the complex space-time.
But even this cursory treatment allows us to obtain a view of what the final
picture will look like.

The internal workings of an elementary particle form two harmonic oscil-
lators. The external fields act as forcing agents on the harmonic oscillators,
thus we have two anharmonic oscillators. In turn, the internal oscillations of
the elementary particle generate the field of the particle. Thus the electron
has a complicated internal structure in spite of what many physicists once
believed. Dirac’s motivation was simplicity and beauty. But he still made
mistakes in judgement. In a 1938 [7] paper he wrote:
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. . . the electron is too simple a thing for the question of the laws
governing its structure to arise, and thus, quantum mechanics
should not be needed for the solution of the difficulty. . .

In way he was right, because something beyond quantum mechanics was
required. In the present model, even the lowly neutrino has an internal
structure. The internal strucure is necessary in order to explain how the
elementary particle interacts with the fields of other elementary particles
and how th elementary particle generates its own fields.

Many of the ideas incorporated into the present model have been exam-
ined before.

Vigier [53] suggested that there were internal motions of the elementary
particles which could be described in terms of Lie Algebras.

In “The transactional interpretation of quantum mechanics”, Cramer [5]
suggested that the interaction of particles is accomplished by means of a
‘space-time standing wave’. A particle sends out an “offer” wave, the other
particle receives the offer wave and responds with an echo or “confirmation
wave”. This idea fits well with the present model.

There is a similiarity of philosophy (though not of detail) with the “Ro-
tator Model of Elementary Particles Considered as Relativistic Extended
Structures in Minkowski Space” of de Broglie, Bohm, Hillion, Halbwachs,
Takabayasi and Vigier [4]. Indeed, the present model could be considered
as the “Rotator Model of Elementary Particles Considered as Relativistic
Extended Structures in Anti-de Sitter Space”

Albert Einstein and Nathan Rosen [13] discussed “The Particle Problem
in the General Theory of Relativity”:

A complete field theory knows only fields and not the concepts
of particle and motion. For these must not exist independently
of the field but are to be treated as part of it. On the basis of
the description of a particle without singularity one has the pos-
sibility of a logically more satisfactory treatment of the combined
problem: The problem of the field and that of motion coincide.

We seem to be stuck in a semantic trap, what we call elementary particles
are actually patterns of energy flows in what we normally call the field of the
particle. This has been noted before.

Ohanian [41] shows that in 1937, Belinfante:
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. . . established that the spin could be regarded as due to a cir-
culating flow of energy, or a momentum density, in the electron
wave field. He established that this picture of the spin is valid
not only for electrons, but also for photons, vector mesons, and
gravitons–in all cases the spin angular momentum is due to a cir-
culating energy flow in the fields. Thus contrary to the common
prejudice, the spin of the electron has a close classical analog: It
is an angular momentum of exactly the same kind as carried by
the fields of a circularly polarized electromagnetic wave.

In the present model, not only the spin, but also the electric charge, the
baryon number, the meson number and the lepton number are “due to a
circulating flow of energy”. It seems reasonable to expect that the curvature
of space-time is due to the rotation of these circulating flows of energy. These
circulating flows of energy replace the idea of quarks. Quarks have not been
isolated simply because they are standing wave patterns within the field of
the particles, they cannot be isolated. In the present model, all elementary
particles have the same type of substructure, not just the baryons and mesons
of quark theory.

Given the relations between “Spinors, Minimal Surfaces, Torsion, Helicity,
Chirality, Spin, Twistors, Orientation, Continuity, Fractals, Point Particles,
Polarization, the Light Cone and the Hopf Map” as explored by R. M. Kiehn
[29] it would seem that the spinors in our model generate a minimal hyper-
surface which connects the two regions of complex space-time. These are the
Einstein-Rosen bridges.

James Clerk Maxwell wrote a series of papers “On Physical Lines of
Force”, several of which dealt with “The Theory of Molecular Vortices” [38].
The substructure of the internal symmetry groups has more than a passing
semblence to these vortices and the vortex theory of atoms, popular in the
19th century.

The point at which we have arrived seems to be less in agreement with
standard quantum theory and more in accord with the views Schrödinger
expressed in a letter to Einstein dated 19 July, 1939:

Dear Einstein,
A few months ago, a Dutch newspaper carried a report which

sounded comparatively intelligent that you have discovered some-
thing important about the connection between gravitation and
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matter waves. I would be terribly interested in that because I
have really believed for a long time that the Ψ waves are to be
identified with waves representing disturbances of the gravita-
tional potential; not of course with those you studied first, but
rather with ones that transport real mass, i.e. a non-vanishing
Tij. That is, I believe that one has to introduce matter into the
general theory of relativity, which contains the Tij only as “asy-
lum ignorantiae” (to use your expression), not as mass points or
something like that, but rather, shall we say, as quantized gravi-
tational waves.[14] , p. 33)

We also seem to be in accord with what Einstein [10] wrote about his
vision:

Since according to our present conceptions the elementary
particles of matter are also, in their essence, nothing else than
condensations of the electromagnetic field, our present view of
the universe presents two realities which are completely sepa-
rated from each other conceptually, although connected causally,
namely, gravitational ether and electromagnetic field, or—as they
might also be called—space and matter.

Of course it would be a great advance if we could succeed
in comprehending the gravitational field and the electromagnetic
field together as one unified conformation. Then for the first time
the epoch of theoretical physics founded by Faraday and Maxwell
would reach a satisfactory conclusion. The contrast between ether
and matter would fade away, and, through the general theory of
relativity, the whole of physics would become a complete system
of thought, like geometry, kinematics, and the theory of gravita-
tion.

The model introduced here can be considered as a theory of elementary
particles, a unified field theory or a quantum theory of gravity. While it
explains several things, there are many questions left to answer about the
model which will be addressed in subsequent papers. We have yet to examine
the role of the VIJ , and WIJ in the physics. Are they allowed symmetries of
the complex spacetime and thus carry new conserved quantities or do they
represent a new family of elementary particles? This is really a question of
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whether the complex structure is fundamental. If the underlying manifold
must be holomorphic, these vector fields will play no role. If the underly-
ing manifold is real, they will be important. Which equations of standard
physics do we expect to obtain? We are looking for the equations of individ-
ual particles and so we must question which of the equations of physics are
valid for individuals and which are statistical? Do we look for the equations
of the electric field γ4 or of the electron (e−, e+) field and the proton (p+,p−)
field? Or both? We began by questioning Dirac’s derivation of equations
on Anti-de Sitter space, yet we haven’t introduced the corrected versions of
those equations. The present version of the model deals with two interacting
particles with a common center. What happens when one is slightly offset?
Further progress will require at least: (1) The tetrad formalism to obtain
gravitation; (2) The coherent state formalism to obtain wave equations and
(3) The eigenfunction representations of the Lie algebra u(3, 2) and (4) har-
monic analysis on QAdS.

When I originally looked at the function

ρ2 = z1z̄1 + z2z̄2 + z3z̄3 − z4z̄4 − z5z̄5,

I was imitating the construction of anti-de Sitter space, and thinking of ρ = R
as a model of the complex space-time QAdS. But then I encountered the
following:

The corresponding energy is easily seen to be [(i)above]

H(x, y) =
1

2

n∑
i=1

αi

(
x2

i + y2
i

)
that is, X is the sum of n noninteracting harmonic oscillators.[1]

This leaves us in a quandry, is ρ2 the energy of five harmonic oscillators or
the metric of a complex space-time or does a level surface of ρ provide a model
for a complex space-time? Are the above descriptions compatible? Could all
three be true? Perhaps we should conclude that what we perceive to be space-
time is the level hypersurface of the energy of a set of harmonic oscillators.
Since the forces between the particles are not equal and the masses are far
from being equal, it seems that we must give up the idea that a level surface
of the function ρ is a representation ofQAdS as a complex space-time. How is
it that the study of the Hamiltonian of 5 noninteracting harmonic oscillators
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led to the construction of 16 interacting harmonic oscillators? But confusion
is good. Progress is made only by questioning the currently accepted theory
to the point of becoming confused and then clarifying the issues which caused
the confusion. To add to the confusion, if we paramentize ρ:

ρ2 = ω1z1z̄1 + ω2z2z̄2 + ω3z3z̄3 − ω4z4z̄4 − ω5z5z̄5,

we obtain something close to the moment of inertia. This interpretation
seems to hold the most promise, for then inertial mass is just the moment of
inertia in a higher dimensional space.

Does the process of constructing the Lie algebra Zf work as a general pro-
cedure for quantizing Hamiltonian systems by finding the Casimir operators
of ZH?

Sophus Lie did all of his work on what we now call Lie algebras in terms
of differential operators [22]. It is a sad state of affairs now that one can
read many works on Lie algebras and Lie groups treated solely in terms of
matrices and never encounter the idea of representing a Lie algebra in terms of
differential operators. The results of this article, using differential operators,
show that matrix representations are inadequate for modeling elementary
particles since matrices do not have eigenfunctions. However, eigenfunction
representations will inevitably play a major role in the identification of the
wave functions.
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